A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network

Phase unwrapping is a critical step in synthetic aperture radar interferometry (InSAR) data processing chains. In almost all phase unwrapping methods, estimating the phase gradient according to the phase continuity assumption (PGE-PCA) is an essential step. The phase continuity assumption is not alw...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Liming Pu, Xiaoling Zhang, Zenan Zhou, Liang Li, Liming Zhou, Jun Shi, Shunjun Wei
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/498b800f92714ed689fc8b3bb2c088d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:498b800f92714ed689fc8b3bb2c088d7
record_format dspace
spelling oai:doaj.org-article:498b800f92714ed689fc8b3bb2c088d72021-11-25T18:54:25ZA Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network10.3390/rs132245642072-4292https://doaj.org/article/498b800f92714ed689fc8b3bb2c088d72021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/22/4564https://doaj.org/toc/2072-4292Phase unwrapping is a critical step in synthetic aperture radar interferometry (InSAR) data processing chains. In almost all phase unwrapping methods, estimating the phase gradient according to the phase continuity assumption (PGE-PCA) is an essential step. The phase continuity assumption is not always satisfied due to the presence of noise and abrupt terrain changes; therefore, it is difficult to get the correct phase gradient. In this paper, we propose a robust least squares phase unwrapping method that works via a phase gradient estimation network based on the encoder–decoder architecture (PGENet) for InSAR. In this method, from a large number of wrapped phase images with topography features and different levels of noise, the deep convolutional neural network can learn global phase features and the phase gradient between adjacent pixels, so a more accurate and robust phase gradient can be predicted than that obtained by PGE-PCA. To get the phase unwrapping result, we use the traditional least squares solver to minimize the difference between the gradient obtained by PGENet and the gradient of the unwrapped phase. Experiments on simulated and real InSAR data demonstrated that the proposed method outperforms the other five well-established phase unwrapping methods and is robust to noise.Liming PuXiaoling ZhangZenan ZhouLiang LiLiming ZhouJun ShiShunjun WeiMDPI AGarticleinterferometric synthetic aperture radardeep convolutional neural networkphase unwrappingScienceQENRemote Sensing, Vol 13, Iss 4564, p 4564 (2021)
institution DOAJ
collection DOAJ
language EN
topic interferometric synthetic aperture radar
deep convolutional neural network
phase unwrapping
Science
Q
spellingShingle interferometric synthetic aperture radar
deep convolutional neural network
phase unwrapping
Science
Q
Liming Pu
Xiaoling Zhang
Zenan Zhou
Liang Li
Liming Zhou
Jun Shi
Shunjun Wei
A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
description Phase unwrapping is a critical step in synthetic aperture radar interferometry (InSAR) data processing chains. In almost all phase unwrapping methods, estimating the phase gradient according to the phase continuity assumption (PGE-PCA) is an essential step. The phase continuity assumption is not always satisfied due to the presence of noise and abrupt terrain changes; therefore, it is difficult to get the correct phase gradient. In this paper, we propose a robust least squares phase unwrapping method that works via a phase gradient estimation network based on the encoder–decoder architecture (PGENet) for InSAR. In this method, from a large number of wrapped phase images with topography features and different levels of noise, the deep convolutional neural network can learn global phase features and the phase gradient between adjacent pixels, so a more accurate and robust phase gradient can be predicted than that obtained by PGE-PCA. To get the phase unwrapping result, we use the traditional least squares solver to minimize the difference between the gradient obtained by PGENet and the gradient of the unwrapped phase. Experiments on simulated and real InSAR data demonstrated that the proposed method outperforms the other five well-established phase unwrapping methods and is robust to noise.
format article
author Liming Pu
Xiaoling Zhang
Zenan Zhou
Liang Li
Liming Zhou
Jun Shi
Shunjun Wei
author_facet Liming Pu
Xiaoling Zhang
Zenan Zhou
Liang Li
Liming Zhou
Jun Shi
Shunjun Wei
author_sort Liming Pu
title A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
title_short A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
title_full A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
title_fullStr A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
title_full_unstemmed A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
title_sort robust insar phase unwrapping method via phase gradient estimation network
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/498b800f92714ed689fc8b3bb2c088d7
work_keys_str_mv AT limingpu arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT xiaolingzhang arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT zenanzhou arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT liangli arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT limingzhou arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT junshi arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT shunjunwei arobustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT limingpu robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT xiaolingzhang robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT zenanzhou robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT liangli robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT limingzhou robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT junshi robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
AT shunjunwei robustinsarphaseunwrappingmethodviaphasegradientestimationnetwork
_version_ 1718410583997415424