Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
The central goal of few-shot scene classification is to learn a model that can generalize well to a novel scene category (UNSEEN) from only one or a few labeled examples. Recent works in the Remote Sensing (RS) community tackle this challenge by developing algorithms in a meta-learning manner. Howev...
Guardado en:
Autores principales: | Pei Zhang, Guoliang Fan, Chanyue Wu, Dong Wang, Ying Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4991804dda80475e995865ceb5225731 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Task-Aware Dual Prototypical Network for Few-Shot Human-Object Interaction Recognition
por: AN Ping, JI Zhong, LIU Xiyao
Publicado: (2021) -
Learning to Identify Illegal Landfills through Scene Classification in Aerial Images
por: Rocio Nahime Torres, et al.
Publicado: (2021) -
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
por: Ali Shojaeipour, et al.
Publicado: (2021) -
Few-Shot Object Detection via Sample Processing
por: Honghui Xu, et al.
Publicado: (2021) -
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
por: Pablo Gomez, et al.
Publicado: (2021)