Solar cell design using graphene-based hollow nano-pillars
Abstract In this paper, the full solar spectrum coverage with an absorption efficiency above 96% is attained by shell-shaped graphene-based hollow nano-pillars on top of the refractory metal substrate. The material choice guarantees the high thermal stability of the device along with its robustness...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/499685962a26416e851c6f5c0fa9175d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:499685962a26416e851c6f5c0fa9175d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:499685962a26416e851c6f5c0fa9175d2021-12-02T15:07:54ZSolar cell design using graphene-based hollow nano-pillars10.1038/s41598-021-95684-22045-2322https://doaj.org/article/499685962a26416e851c6f5c0fa9175d2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95684-2https://doaj.org/toc/2045-2322Abstract In this paper, the full solar spectrum coverage with an absorption efficiency above 96% is attained by shell-shaped graphene-based hollow nano-pillars on top of the refractory metal substrate. The material choice guarantees the high thermal stability of the device along with its robustness against harsh environmental conditions. To design the structure, constitutive parameters of graphene material in the desired frequency range are investigated and its absorption capability is illustrated by calculating the attenuation constant of the electromagnetic wave. It is observed that broadband absorption is a consequence of wideband retrieved surface impedance matching with the free-space intrinsic impedance due to the tapered geometry. Moreover, the azimuthal and longitudinal cavity resonances with different orders are exhibited for a better understanding of the underlying wideband absorption mechanism. Importantly, the device can tolerate the oblique incidence in a wide span around 65°, regardless of the polarization. The proposed structure can be realized by large-area fabrication techniques.Shiva Hayati RaadZahra AtlasbafNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shiva Hayati Raad Zahra Atlasbaf Solar cell design using graphene-based hollow nano-pillars |
description |
Abstract In this paper, the full solar spectrum coverage with an absorption efficiency above 96% is attained by shell-shaped graphene-based hollow nano-pillars on top of the refractory metal substrate. The material choice guarantees the high thermal stability of the device along with its robustness against harsh environmental conditions. To design the structure, constitutive parameters of graphene material in the desired frequency range are investigated and its absorption capability is illustrated by calculating the attenuation constant of the electromagnetic wave. It is observed that broadband absorption is a consequence of wideband retrieved surface impedance matching with the free-space intrinsic impedance due to the tapered geometry. Moreover, the azimuthal and longitudinal cavity resonances with different orders are exhibited for a better understanding of the underlying wideband absorption mechanism. Importantly, the device can tolerate the oblique incidence in a wide span around 65°, regardless of the polarization. The proposed structure can be realized by large-area fabrication techniques. |
format |
article |
author |
Shiva Hayati Raad Zahra Atlasbaf |
author_facet |
Shiva Hayati Raad Zahra Atlasbaf |
author_sort |
Shiva Hayati Raad |
title |
Solar cell design using graphene-based hollow nano-pillars |
title_short |
Solar cell design using graphene-based hollow nano-pillars |
title_full |
Solar cell design using graphene-based hollow nano-pillars |
title_fullStr |
Solar cell design using graphene-based hollow nano-pillars |
title_full_unstemmed |
Solar cell design using graphene-based hollow nano-pillars |
title_sort |
solar cell design using graphene-based hollow nano-pillars |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/499685962a26416e851c6f5c0fa9175d |
work_keys_str_mv |
AT shivahayatiraad solarcelldesignusinggraphenebasedhollownanopillars AT zahraatlasbaf solarcelldesignusinggraphenebasedhollownanopillars |
_version_ |
1718388312089034752 |