Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simul...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/49ab49b7d5c1485abf5565b9443d2620 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:49ab49b7d5c1485abf5565b9443d2620 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:49ab49b7d5c1485abf5565b9443d26202021-12-02T18:14:22ZEvolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment10.1038/s41524-021-00614-52057-3960https://doaj.org/article/49ab49b7d5c1485abf5565b9443d26202021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00614-5https://doaj.org/toc/2057-3960Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and tissue-scale dynamics can be combined with machine learning to optimise nanomedicine.Namid R. StillmanIgor BalazMichail-Antisthenis TsompanasMarina KovacevicSepinoud AzimiSébastien LafondAndrew AdamatzkySabine HauertNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Namid R. Stillman Igor Balaz Michail-Antisthenis Tsompanas Marina Kovacevic Sepinoud Azimi Sébastien Lafond Andrew Adamatzky Sabine Hauert Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
description |
Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and tissue-scale dynamics can be combined with machine learning to optimise nanomedicine. |
format |
article |
author |
Namid R. Stillman Igor Balaz Michail-Antisthenis Tsompanas Marina Kovacevic Sepinoud Azimi Sébastien Lafond Andrew Adamatzky Sabine Hauert |
author_facet |
Namid R. Stillman Igor Balaz Michail-Antisthenis Tsompanas Marina Kovacevic Sepinoud Azimi Sébastien Lafond Andrew Adamatzky Sabine Hauert |
author_sort |
Namid R. Stillman |
title |
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
title_short |
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
title_full |
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
title_fullStr |
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
title_full_unstemmed |
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
title_sort |
evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/49ab49b7d5c1485abf5565b9443d2620 |
work_keys_str_mv |
AT namidrstillman evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT igorbalaz evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT michailantisthenistsompanas evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT marinakovacevic evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT sepinoudazimi evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT sebastienlafond evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT andrewadamatzky evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment AT sabinehauert evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment |
_version_ |
1718378390510108672 |