Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment

Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Namid R. Stillman, Igor Balaz, Michail-Antisthenis Tsompanas, Marina Kovacevic, Sepinoud Azimi, Sébastien Lafond, Andrew Adamatzky, Sabine Hauert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/49ab49b7d5c1485abf5565b9443d2620
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:49ab49b7d5c1485abf5565b9443d2620
record_format dspace
spelling oai:doaj.org-article:49ab49b7d5c1485abf5565b9443d26202021-12-02T18:14:22ZEvolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment10.1038/s41524-021-00614-52057-3960https://doaj.org/article/49ab49b7d5c1485abf5565b9443d26202021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00614-5https://doaj.org/toc/2057-3960Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and tissue-scale dynamics can be combined with machine learning to optimise nanomedicine.Namid R. StillmanIgor BalazMichail-Antisthenis TsompanasMarina KovacevicSepinoud AzimiSébastien LafondAndrew AdamatzkySabine HauertNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Namid R. Stillman
Igor Balaz
Michail-Antisthenis Tsompanas
Marina Kovacevic
Sepinoud Azimi
Sébastien Lafond
Andrew Adamatzky
Sabine Hauert
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
description Abstract We present the EVONANO platform for the evolution of nanomedicines with application to anti-cancer treatments. Our work aims to decrease both the time and cost required to develop nanoparticle designs. EVONANO includes a simulator to grow tumours, extract representative scenarios, and simulate nanoparticle transport through these scenarios in order to predict nanoparticle distribution. The nanoparticle designs are optimised using machine learning to efficiently find the most effective anti-cancer treatments. We demonstrate EVONANO with two examples optimising the properties of nanoparticles and treatment to selectively kill cancer cells over a range of tumour environments. Our platform shows how in silico models that capture both tumour and tissue-scale dynamics can be combined with machine learning to optimise nanomedicine.
format article
author Namid R. Stillman
Igor Balaz
Michail-Antisthenis Tsompanas
Marina Kovacevic
Sepinoud Azimi
Sébastien Lafond
Andrew Adamatzky
Sabine Hauert
author_facet Namid R. Stillman
Igor Balaz
Michail-Antisthenis Tsompanas
Marina Kovacevic
Sepinoud Azimi
Sébastien Lafond
Andrew Adamatzky
Sabine Hauert
author_sort Namid R. Stillman
title Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
title_short Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
title_full Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
title_fullStr Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
title_full_unstemmed Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
title_sort evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/49ab49b7d5c1485abf5565b9443d2620
work_keys_str_mv AT namidrstillman evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT igorbalaz evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT michailantisthenistsompanas evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT marinakovacevic evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT sepinoudazimi evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT sebastienlafond evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT andrewadamatzky evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
AT sabinehauert evolutionarycomputationalplatformfortheautomaticdiscoveryofnanocarriersforcancertreatment
_version_ 1718378390510108672