Lower and upper bounds for entanglement of Rényi-α entropy

Abstract Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the appli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wei Song, Lin Chen, Zhuo-Liang Cao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
R
Q
Acceso en línea:https://doaj.org/article/49af16d376514cdd99634c0e11f87fc9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application our bound for some concrete examples. Moreover, we establish the relation between entanglement Rényi-α entropy and some other entanglement measures.