Lower and upper bounds for entanglement of Rényi-α entropy
Abstract Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the appli...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/49af16d376514cdd99634c0e11f87fc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:49af16d376514cdd99634c0e11f87fc9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:49af16d376514cdd99634c0e11f87fc92021-12-02T12:32:09ZLower and upper bounds for entanglement of Rényi-α entropy10.1038/s41598-016-0029-92045-2322https://doaj.org/article/49af16d376514cdd99634c0e11f87fc92016-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-016-0029-9https://doaj.org/toc/2045-2322Abstract Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application our bound for some concrete examples. Moreover, we establish the relation between entanglement Rényi-α entropy and some other entanglement measures.Wei SongLin ChenZhuo-Liang CaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 6, Iss 1, Pp 1-10 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Wei Song Lin Chen Zhuo-Liang Cao Lower and upper bounds for entanglement of Rényi-α entropy |
description |
Abstract Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application our bound for some concrete examples. Moreover, we establish the relation between entanglement Rényi-α entropy and some other entanglement measures. |
format |
article |
author |
Wei Song Lin Chen Zhuo-Liang Cao |
author_facet |
Wei Song Lin Chen Zhuo-Liang Cao |
author_sort |
Wei Song |
title |
Lower and upper bounds for entanglement of Rényi-α entropy |
title_short |
Lower and upper bounds for entanglement of Rényi-α entropy |
title_full |
Lower and upper bounds for entanglement of Rényi-α entropy |
title_fullStr |
Lower and upper bounds for entanglement of Rényi-α entropy |
title_full_unstemmed |
Lower and upper bounds for entanglement of Rényi-α entropy |
title_sort |
lower and upper bounds for entanglement of rényi-α entropy |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/49af16d376514cdd99634c0e11f87fc9 |
work_keys_str_mv |
AT weisong lowerandupperboundsforentanglementofrenyiaentropy AT linchen lowerandupperboundsforentanglementofrenyiaentropy AT zhuoliangcao lowerandupperboundsforentanglementofrenyiaentropy |
_version_ |
1718394152367947776 |