AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance.

Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vokkaliga Thammegowda Harshavardhan, Le Van Son, Christiane Seiler, Astrid Junker, Kathleen Weigelt-Fischer, Christian Klukas, Thomas Altmann, Nese Sreenivasulu, Helmut Bäumlein, Markus Kuhlmann
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/49c748711c024fb2a1e30a93717a0541
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Crop plants are regularly challenged by a range of environmental stresses which typically retard their growth and ultimately compromise economic yield. The stress response involves the reprogramming of approximately 4% of the transcriptome. Here, the behavior of AtRD22 and AtUSPL1, both members of the Arabidopsis thaliana BURP (BNM2, USP, RD22 and polygalacturonase isozyme) domain-containing gene family, has been characterized. Both genes are up-regulated as part of the abscisic acid (ABA) mediated moisture stress response. While AtRD22 transcript was largely restricted to the leaf, that of AtUSPL1 was more prevalent in the root. As the loss of function of either gene increased the plant's moisture stress tolerance, the implication was that their products act to suppress the drought stress response. In addition to the known involvement of AtUSPL1 in seed development, a further role in stress tolerance was demonstrated. Based on transcriptomic data and phenotype we concluded that the enhanced moisture stress tolerance of the two loss-of-function mutants is a consequence of an enhanced basal defense response.