Event Knowledge in Compositional Distributional Semantics

The great majority of compositional models in distributional semantics present methods to compose vectors or tensors in a representation of the sentence. Here we propose to enrich one of the best performing methods (vector addition, which we take as a baseline) with distributional knowledge about ev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ludovica Pannitto, Alessandro Lenci
Formato: article
Lenguaje:EN
Publicado: Accademia University Press 2019
Materias:
H
Acceso en línea:https://doaj.org/article/49c7977264824af08efff4114877b834
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:49c7977264824af08efff4114877b834
record_format dspace
spelling oai:doaj.org-article:49c7977264824af08efff4114877b8342021-12-02T09:52:23ZEvent Knowledge in Compositional Distributional Semantics2499-455310.4000/ijcol.463https://doaj.org/article/49c7977264824af08efff4114877b8342019-06-01T00:00:00Zhttp://journals.openedition.org/ijcol/463https://doaj.org/toc/2499-4553The great majority of compositional models in distributional semantics present methods to compose vectors or tensors in a representation of the sentence. Here we propose to enrich one of the best performing methods (vector addition, which we take as a baseline) with distributional knowledge about events. The resulting model is able to outperform our baseline.Ludovica PannittoAlessandro LenciAccademia University PressarticleSocial SciencesHComputational linguistics. Natural language processingP98-98.5ENIJCoL, Vol 5, Iss 1, Pp 73-88 (2019)
institution DOAJ
collection DOAJ
language EN
topic Social Sciences
H
Computational linguistics. Natural language processing
P98-98.5
spellingShingle Social Sciences
H
Computational linguistics. Natural language processing
P98-98.5
Ludovica Pannitto
Alessandro Lenci
Event Knowledge in Compositional Distributional Semantics
description The great majority of compositional models in distributional semantics present methods to compose vectors or tensors in a representation of the sentence. Here we propose to enrich one of the best performing methods (vector addition, which we take as a baseline) with distributional knowledge about events. The resulting model is able to outperform our baseline.
format article
author Ludovica Pannitto
Alessandro Lenci
author_facet Ludovica Pannitto
Alessandro Lenci
author_sort Ludovica Pannitto
title Event Knowledge in Compositional Distributional Semantics
title_short Event Knowledge in Compositional Distributional Semantics
title_full Event Knowledge in Compositional Distributional Semantics
title_fullStr Event Knowledge in Compositional Distributional Semantics
title_full_unstemmed Event Knowledge in Compositional Distributional Semantics
title_sort event knowledge in compositional distributional semantics
publisher Accademia University Press
publishDate 2019
url https://doaj.org/article/49c7977264824af08efff4114877b834
work_keys_str_mv AT ludovicapannitto eventknowledgeincompositionaldistributionalsemantics
AT alessandrolenci eventknowledgeincompositionaldistributionalsemantics
_version_ 1718397942180610048