A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts
Abstract For high-throughput screening of materials for heterogeneous catalysis, scaling relations provides an efficient scheme to estimate the chemisorption energies of hydrogenated species. However, conditioning on a single descriptor ignores the model uncertainty and leads to suboptimal predictio...
Guardado en:
Autores principales: | Osman Mamun, Kirsten T. Winther, Jacob R. Boes, Thomas Bligaard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/49cb2d1a410e45efa84ac22648868d1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
por: Byung Chul Yeo, et al.
Publicado: (2021) -
A high-throughput framework for determining adsorption energies on solid surfaces
por: Joseph H. Montoya, et al.
Publicado: (2017) -
PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys
por: Mohammadreza Yaghoobi, et al.
Publicado: (2021) -
Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
por: Xin Wang, et al.
Publicado: (2020) -
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021)