Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages

Jun Ye,1–3 Yanfang Yang,1,2 Wujun Dong,1,2 Yue Gao,1,2 Yingying Meng,1,2 Hongliang Wang,1,2 Lin Li,1,2 Jing Jin,1 Ming Ji,1 Xuejun Xia,1,2 Xiaoguang Chen,1 Yiqun Jin,3 Yuling Liu1,21State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ye J, Yang Y, Dong W, Gao Y, Meng Y, Wang H, Li L, Jin J, Ji M, Xia X, Chen X, Jin Y, Liu Y
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/49dc9215423f48b4b4413dfb2ad7b32b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:49dc9215423f48b4b4413dfb2ad7b32b
record_format dspace
spelling oai:doaj.org-article:49dc9215423f48b4b4413dfb2ad7b32b2021-12-02T07:39:08ZDrug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages1178-2013https://doaj.org/article/49dc9215423f48b4b4413dfb2ad7b32b2019-05-01T00:00:00Zhttps://www.dovepress.com/drug-free-mannosylated-liposomes-inhibit-tumor-growth-by-promoting-the-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jun Ye,1–3 Yanfang Yang,1,2 Wujun Dong,1,2 Yue Gao,1,2 Yingying Meng,1,2 Hongliang Wang,1,2 Lin Li,1,2 Jing Jin,1 Ming Ji,1 Xuejun Xia,1,2 Xiaoguang Chen,1 Yiqun Jin,3 Yuling Liu1,21State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People’s Republic of China; 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People’s Republic of China; 3Research and Development Department, Beijing Wehand-bio Pharmaceutical Co. Ltd, Beijing, 102600, People’s Republic of ChinaBackground: Tumor-associated macrophages (TAMs) are critical in tumor progression and metastasis. Selective targeting of TAMs holds great potential to ameliorate the immunosuppressive tumor microenvironment and enhance the efficacy of antitumor therapy. Various liposomes have been developed to target TAMs via cell-specific surface receptors either to deplete or re-educate TAMs. Since immuno-stimulation often initiates with the interaction of nanocarriers with the innate immunity cells such as macrophages, the intrinsic impact of drug-free liposomes on macrophage activation and polarization via cell interaction is one of the most critical issues in nanomedicine for promoting effective immunotherapy.Methods: In this study, conventional bare liposomes, PEGylated liposomes, and mannosylated liposomes were developed and the cytotoxicity, cellular internalization, immunostimulatory activity, targeting efficiency, antitumor efficacy, and mechanism were evaluated in vitro and in vivo.Results: All liposomes displayed an ideal particle size, good biocompatibility, and controlled release behavior. Mannosylated liposomes exhibited superior in vitro cellular internalization and tumor spheroid penetration with the aid of the mannose receptor-mediated TAMs-targeting effects. In particular, mannosylated liposomes promoted the polarization of both M0 and M2 to the M1 phenotype by enhancing the expression ratio of CD86/CD206 in vitro. Of note, mannosylated liposomes could inhibit G422 glioma tumor growth, which may be attributed to the polarization of TAMs, as evidenced by the reduction in expression level of the TAMs surface marker.Conclusion: These results indicate the potential value of mannosylated liposomes in the design of a rational delivery system to enhance the antitumor immune efficacy of immunomodulators by inducing a shift from the M2 to the M1 phenotype.Keywords: liposomes, cancer immunotherapy, tumor-associated macrophages, mannose receptor, drug deliveryYe JYang YDong WGao YMeng YWang HLi LJin JJi MXia XChen XJin YLiu YDove Medical Pressarticleliposomescancer immunotherapytumor-associated macrophagesmannose receptordrug deliveryMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 3203-3220 (2019)
institution DOAJ
collection DOAJ
language EN
topic liposomes
cancer immunotherapy
tumor-associated macrophages
mannose receptor
drug delivery
Medicine (General)
R5-920
spellingShingle liposomes
cancer immunotherapy
tumor-associated macrophages
mannose receptor
drug delivery
Medicine (General)
R5-920
Ye J
Yang Y
Dong W
Gao Y
Meng Y
Wang H
Li L
Jin J
Ji M
Xia X
Chen X
Jin Y
Liu Y
Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
description Jun Ye,1–3 Yanfang Yang,1,2 Wujun Dong,1,2 Yue Gao,1,2 Yingying Meng,1,2 Hongliang Wang,1,2 Lin Li,1,2 Jing Jin,1 Ming Ji,1 Xuejun Xia,1,2 Xiaoguang Chen,1 Yiqun Jin,3 Yuling Liu1,21State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People’s Republic of China; 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People’s Republic of China; 3Research and Development Department, Beijing Wehand-bio Pharmaceutical Co. Ltd, Beijing, 102600, People’s Republic of ChinaBackground: Tumor-associated macrophages (TAMs) are critical in tumor progression and metastasis. Selective targeting of TAMs holds great potential to ameliorate the immunosuppressive tumor microenvironment and enhance the efficacy of antitumor therapy. Various liposomes have been developed to target TAMs via cell-specific surface receptors either to deplete or re-educate TAMs. Since immuno-stimulation often initiates with the interaction of nanocarriers with the innate immunity cells such as macrophages, the intrinsic impact of drug-free liposomes on macrophage activation and polarization via cell interaction is one of the most critical issues in nanomedicine for promoting effective immunotherapy.Methods: In this study, conventional bare liposomes, PEGylated liposomes, and mannosylated liposomes were developed and the cytotoxicity, cellular internalization, immunostimulatory activity, targeting efficiency, antitumor efficacy, and mechanism were evaluated in vitro and in vivo.Results: All liposomes displayed an ideal particle size, good biocompatibility, and controlled release behavior. Mannosylated liposomes exhibited superior in vitro cellular internalization and tumor spheroid penetration with the aid of the mannose receptor-mediated TAMs-targeting effects. In particular, mannosylated liposomes promoted the polarization of both M0 and M2 to the M1 phenotype by enhancing the expression ratio of CD86/CD206 in vitro. Of note, mannosylated liposomes could inhibit G422 glioma tumor growth, which may be attributed to the polarization of TAMs, as evidenced by the reduction in expression level of the TAMs surface marker.Conclusion: These results indicate the potential value of mannosylated liposomes in the design of a rational delivery system to enhance the antitumor immune efficacy of immunomodulators by inducing a shift from the M2 to the M1 phenotype.Keywords: liposomes, cancer immunotherapy, tumor-associated macrophages, mannose receptor, drug delivery
format article
author Ye J
Yang Y
Dong W
Gao Y
Meng Y
Wang H
Li L
Jin J
Ji M
Xia X
Chen X
Jin Y
Liu Y
author_facet Ye J
Yang Y
Dong W
Gao Y
Meng Y
Wang H
Li L
Jin J
Ji M
Xia X
Chen X
Jin Y
Liu Y
author_sort Ye J
title Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
title_short Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
title_full Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
title_fullStr Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
title_full_unstemmed Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
title_sort drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/49dc9215423f48b4b4413dfb2ad7b32b
work_keys_str_mv AT yej drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT yangy drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT dongw drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT gaoy drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT mengy drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT wangh drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT lil drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT jinj drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT jim drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT xiax drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT chenx drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT jiny drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
AT liuy drugfreemannosylatedliposomesinhibittumorgrowthbypromotingthepolarizationoftumorassociatedmacrophages
_version_ 1718399277187727360