The Krein-von Neumann extension of a regular even order quasi-differential operator

We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal ope...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall
Formato: article
Lenguaje:EN
Publicado: AGH Univeristy of Science and Technology Press 2021
Materias:
Acceso en línea:https://doi.org/10.7494/OpMath.2021.41.6.805
https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.