The Krein-von Neumann extension of a regular even order quasi-differential operator
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal ope...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AGH Univeristy of Science and Technology Press
2021
|
Materias: | |
Acceso en línea: | https://doi.org/10.7494/OpMath.2021.41.6.805 https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:49e6ccb8e29e43b2beec6d60a20bb783 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:49e6ccb8e29e43b2beec6d60a20bb7832021-11-29T22:51:48ZThe Krein-von Neumann extension of a regular even order quasi-differential operator1232-9274https://doi.org/10.7494/OpMath.2021.41.6.805https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb7832021-11-01T00:00:00Zhttps://www.opuscula.agh.edu.pl/vol41/6/art/opuscula_math_4138.pdfhttps://doaj.org/toc/1232-9274We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.Minsung ChoSeth HoisingtonRoger NicholsBrian UdallAGH Univeristy of Science and Technology Pressarticlekrein-von neumann extensionregular quasi-differential operatorApplied mathematics. Quantitative methodsT57-57.97ENOpuscula Mathematica, Vol 41, Iss 6, Pp 805-841 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
krein-von neumann extension regular quasi-differential operator Applied mathematics. Quantitative methods T57-57.97 |
spellingShingle |
krein-von neumann extension regular quasi-differential operator Applied mathematics. Quantitative methods T57-57.97 Minsung Cho Seth Hoisington Roger Nichols Brian Udall The Krein-von Neumann extension of a regular even order quasi-differential operator |
description |
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl. |
format |
article |
author |
Minsung Cho Seth Hoisington Roger Nichols Brian Udall |
author_facet |
Minsung Cho Seth Hoisington Roger Nichols Brian Udall |
author_sort |
Minsung Cho |
title |
The Krein-von Neumann extension of a regular even order quasi-differential operator |
title_short |
The Krein-von Neumann extension of a regular even order quasi-differential operator |
title_full |
The Krein-von Neumann extension of a regular even order quasi-differential operator |
title_fullStr |
The Krein-von Neumann extension of a regular even order quasi-differential operator |
title_full_unstemmed |
The Krein-von Neumann extension of a regular even order quasi-differential operator |
title_sort |
krein-von neumann extension of a regular even order quasi-differential operator |
publisher |
AGH Univeristy of Science and Technology Press |
publishDate |
2021 |
url |
https://doi.org/10.7494/OpMath.2021.41.6.805 https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783 |
work_keys_str_mv |
AT minsungcho thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT sethhoisington thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT rogernichols thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT brianudall thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT minsungcho kreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT sethhoisington kreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT rogernichols kreinvonneumannextensionofaregularevenorderquasidifferentialoperator AT brianudall kreinvonneumannextensionofaregularevenorderquasidifferentialoperator |
_version_ |
1718406861096484864 |