The Krein-von Neumann extension of a regular even order quasi-differential operator

We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal ope...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall
Formato: article
Lenguaje:EN
Publicado: AGH Univeristy of Science and Technology Press 2021
Materias:
Acceso en línea:https://doi.org/10.7494/OpMath.2021.41.6.805
https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:49e6ccb8e29e43b2beec6d60a20bb783
record_format dspace
spelling oai:doaj.org-article:49e6ccb8e29e43b2beec6d60a20bb7832021-11-29T22:51:48ZThe Krein-von Neumann extension of a regular even order quasi-differential operator1232-9274https://doi.org/10.7494/OpMath.2021.41.6.805https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb7832021-11-01T00:00:00Zhttps://www.opuscula.agh.edu.pl/vol41/6/art/opuscula_math_4138.pdfhttps://doaj.org/toc/1232-9274We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.Minsung ChoSeth HoisingtonRoger NicholsBrian UdallAGH Univeristy of Science and Technology Pressarticlekrein-von neumann extensionregular quasi-differential operatorApplied mathematics. Quantitative methodsT57-57.97ENOpuscula Mathematica, Vol 41, Iss 6, Pp 805-841 (2021)
institution DOAJ
collection DOAJ
language EN
topic krein-von neumann extension
regular quasi-differential operator
Applied mathematics. Quantitative methods
T57-57.97
spellingShingle krein-von neumann extension
regular quasi-differential operator
Applied mathematics. Quantitative methods
T57-57.97
Minsung Cho
Seth Hoisington
Roger Nichols
Brian Udall
The Krein-von Neumann extension of a regular even order quasi-differential operator
description We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.
format article
author Minsung Cho
Seth Hoisington
Roger Nichols
Brian Udall
author_facet Minsung Cho
Seth Hoisington
Roger Nichols
Brian Udall
author_sort Minsung Cho
title The Krein-von Neumann extension of a regular even order quasi-differential operator
title_short The Krein-von Neumann extension of a regular even order quasi-differential operator
title_full The Krein-von Neumann extension of a regular even order quasi-differential operator
title_fullStr The Krein-von Neumann extension of a regular even order quasi-differential operator
title_full_unstemmed The Krein-von Neumann extension of a regular even order quasi-differential operator
title_sort krein-von neumann extension of a regular even order quasi-differential operator
publisher AGH Univeristy of Science and Technology Press
publishDate 2021
url https://doi.org/10.7494/OpMath.2021.41.6.805
https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783
work_keys_str_mv AT minsungcho thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT sethhoisington thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT rogernichols thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT brianudall thekreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT minsungcho kreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT sethhoisington kreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT rogernichols kreinvonneumannextensionofaregularevenorderquasidifferentialoperator
AT brianudall kreinvonneumannextensionofaregularevenorderquasidifferentialoperator
_version_ 1718406861096484864