The Krein-von Neumann extension of a regular even order quasi-differential operator
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal ope...
Enregistré dans:
Auteurs principaux: | Minsung Cho, Seth Hoisington, Roger Nichols, Brian Udall |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AGH Univeristy of Science and Technology Press
2021
|
Sujets: | |
Accès en ligne: | https://doi.org/10.7494/OpMath.2021.41.6.805 https://doaj.org/article/49e6ccb8e29e43b2beec6d60a20bb783 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Fixed point results for Geraghty quasi-contraction type mappings in dislocated quasi-metric spaces
par: Joy C. Umudu, et autres
Publié: (2020) -
Editorial Board
Publié: (2021) -
A best proximity point theorem for special generalized proximal β-quasi contractive mappings
par: M. Iadh Ayari, et autres
Publié: (2019) -
A network-based group testing strategy for colleges
par: Alex Zhao, et autres
Publié: (2021) -
Corrigendum to “Modeling and image quality enhancement for dynamic compressive imaging system”
Publié: (2021)