Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity

Abstract We reviewed the field redefinition approach of Seeley-DeWitt expansion for the determination of Seeley-DeWitt coefficients from arXiv:1505.01156 . We apply this approach to compute the first three Seeley-DeWitt coefficients for “non-minimal” N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gourav Banerjee, Binata Panda
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/4a2b5bb790a64c838e4fc0f186132f7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4a2b5bb790a64c838e4fc0f186132f7b
record_format dspace
spelling oai:doaj.org-article:4a2b5bb790a64c838e4fc0f186132f7b2021-12-05T12:24:57ZLogarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity10.1007/JHEP11(2021)2141029-8479https://doaj.org/article/4a2b5bb790a64c838e4fc0f186132f7b2021-11-01T00:00:00Zhttps://doi.org/10.1007/JHEP11(2021)214https://doaj.org/toc/1029-8479Abstract We reviewed the field redefinition approach of Seeley-DeWitt expansion for the determination of Seeley-DeWitt coefficients from arXiv:1505.01156 . We apply this approach to compute the first three Seeley-DeWitt coefficients for “non-minimal” N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity in four dimensions. Finally, we use the third coefficient for the computation of the logarithmic corrections to the Bekenstein-Hawking entropy of non-extremal black holes following arXiv:1205.0971 . We determine the logarithmic corrections for non-extremal Kerr-Newman, Kerr, Reissner-Nordström and Schwarzschild black holes in “non-minimal” N $$ \mathcal{N} $$ = 1, d = 4 Einstein-Maxwell supergravity.Gourav BanerjeeBinata PandaSpringerOpenarticleBlack Holes in String TheoryGauge-gravity correspondenceNuclear and particle physics. Atomic energy. RadioactivityQC770-798ENJournal of High Energy Physics, Vol 2021, Iss 11, Pp 1-35 (2021)
institution DOAJ
collection DOAJ
language EN
topic Black Holes in String Theory
Gauge-gravity correspondence
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Black Holes in String Theory
Gauge-gravity correspondence
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Gourav Banerjee
Binata Panda
Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
description Abstract We reviewed the field redefinition approach of Seeley-DeWitt expansion for the determination of Seeley-DeWitt coefficients from arXiv:1505.01156 . We apply this approach to compute the first three Seeley-DeWitt coefficients for “non-minimal” N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity in four dimensions. Finally, we use the third coefficient for the computation of the logarithmic corrections to the Bekenstein-Hawking entropy of non-extremal black holes following arXiv:1205.0971 . We determine the logarithmic corrections for non-extremal Kerr-Newman, Kerr, Reissner-Nordström and Schwarzschild black holes in “non-minimal” N $$ \mathcal{N} $$ = 1, d = 4 Einstein-Maxwell supergravity.
format article
author Gourav Banerjee
Binata Panda
author_facet Gourav Banerjee
Binata Panda
author_sort Gourav Banerjee
title Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
title_short Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
title_full Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
title_fullStr Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
title_full_unstemmed Logarithmic corrections to the entropy of non-extremal black holes in N $$ \mathcal{N} $$ = 1 Einstein-Maxwell supergravity
title_sort logarithmic corrections to the entropy of non-extremal black holes in n $$ \mathcal{n} $$ = 1 einstein-maxwell supergravity
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/4a2b5bb790a64c838e4fc0f186132f7b
work_keys_str_mv AT gouravbanerjee logarithmiccorrectionstotheentropyofnonextremalblackholesinnmathcaln1einsteinmaxwellsupergravity
AT binatapanda logarithmiccorrectionstotheentropyofnonextremalblackholesinnmathcaln1einsteinmaxwellsupergravity
_version_ 1718371953920704512