Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases

ABSTRACT Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daria Lavysh, Maria Sokolova, Marina Slashcheva, Konrad U. Förstner, Konstantin Severinov
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/4a3c2ce030d9478082c030048aab4b16
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4a3c2ce030d9478082c030048aab4b16
record_format dspace
spelling oai:doaj.org-article:4a3c2ce030d9478082c030048aab4b162021-11-15T15:51:07ZTranscription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases10.1128/mBio.02041-162150-7511https://doaj.org/article/4a3c2ce030d9478082c030048aab4b162017-03-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02041-16https://doaj.org/toc/2150-7511ABSTRACT Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.Daria LavyshMaria SokolovaMarina SlashchevaKonrad U. FörstnerKonstantin SeverinovAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 8, Iss 1 (2017)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Daria Lavysh
Maria Sokolova
Marina Slashcheva
Konrad U. Förstner
Konstantin Severinov
Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
description ABSTRACT Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages.
format article
author Daria Lavysh
Maria Sokolova
Marina Slashcheva
Konrad U. Förstner
Konstantin Severinov
author_facet Daria Lavysh
Maria Sokolova
Marina Slashcheva
Konrad U. Förstner
Konstantin Severinov
author_sort Daria Lavysh
title Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
title_short Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
title_full Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
title_fullStr Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
title_full_unstemmed Transcription Profiling of <italic toggle="yes">Bacillus subtilis</italic> Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases
title_sort transcription profiling of <italic toggle="yes">bacillus subtilis</italic> cells infected with ar9, a giant phage encoding two multisubunit rna polymerases
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/4a3c2ce030d9478082c030048aab4b16
work_keys_str_mv AT darialavysh transcriptionprofilingofitalictoggleyesbacillussubtilisitaliccellsinfectedwithar9agiantphageencodingtwomultisubunitrnapolymerases
AT mariasokolova transcriptionprofilingofitalictoggleyesbacillussubtilisitaliccellsinfectedwithar9agiantphageencodingtwomultisubunitrnapolymerases
AT marinaslashcheva transcriptionprofilingofitalictoggleyesbacillussubtilisitaliccellsinfectedwithar9agiantphageencodingtwomultisubunitrnapolymerases
AT konraduforstner transcriptionprofilingofitalictoggleyesbacillussubtilisitaliccellsinfectedwithar9agiantphageencodingtwomultisubunitrnapolymerases
AT konstantinseverinov transcriptionprofilingofitalictoggleyesbacillussubtilisitaliccellsinfectedwithar9agiantphageencodingtwomultisubunitrnapolymerases
_version_ 1718427395926523904