Improvement of mechanical parameters of concrete yielded from pozzolanic cement for irrigation and drainage projects

Among various active parts of construction industry, irrigation and drainage projects (such as dams, spillways and peripheral parts such as canals) are one of the biggest consumers of cement. Various empirical reports show that the concrete made of Ardabil’s pozzolanic cement does not meet the requi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: mahzad esmaeili falak, amin lotfi eghlim, samira nematzadeh
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2019
Materias:
Acceso en línea:https://doaj.org/article/4a65bb216f2b487abad42bc2041d9e55
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Among various active parts of construction industry, irrigation and drainage projects (such as dams, spillways and peripheral parts such as canals) are one of the biggest consumers of cement. Various empirical reports show that the concrete made of Ardabil’s pozzolanic cement does not meet the requirement for irrigation and drainage projects in case of mechanical characteristics which signifies the importance of further research in this area. The objective of this study is to investigate the suitability of replacing Ardabil’s pozzolanic cement with type 2 Soufian cement from the viewpoint of compression strenght at irrigation and drainage projecta. This study focuses on experimental methods by performing standard compression strength tests on base and improved speimens. The initial results showed that solely utilization of Ardabil’s pozzolanic cement in structural parts is not feasible and there should be some other approaches to reach this end. In this regard, 4 additive materials were used instead of cement including: stone powder, fined part of sand, silica fume and fly ash. The results indicated that utilization of fly ash increases the compressive strength of the cement in long term application; however, it causes a reduction in compressive strength in short term application. Furthermore, replacemet of silica fume in lower percentages causes a reduction in compression strength; however, higher percentage of silica fume replacement increases compression strength. The finer parts of the sand slightly decreased the compression strength and the replacement of stone powder yields to an increase in long term compression strength.