Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning

Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.

Guardado en:
Detalles Bibliográficos
Autores principales: Dimitrios Vitsios, Ryan S. Dhindsa, Lawrence Middleton, Ayal B. Gussow, Slavé Petrovski
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4a6d20095a0b4f49bb6cbd6b031c99c8
record_format dspace
spelling oai:doaj.org-article:4a6d20095a0b4f49bb6cbd6b031c99c82021-12-02T13:33:01ZPrioritizing non-coding regions based on human genomic constraint and sequence context with deep learning10.1038/s41467-021-21790-42041-1723https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c82021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21790-4https://doaj.org/toc/2041-1723Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.Dimitrios VitsiosRyan S. DhindsaLawrence MiddletonAyal B. GussowSlavé PetrovskiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dimitrios Vitsios
Ryan S. Dhindsa
Lawrence Middleton
Ayal B. Gussow
Slavé Petrovski
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
description Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.
format article
author Dimitrios Vitsios
Ryan S. Dhindsa
Lawrence Middleton
Ayal B. Gussow
Slavé Petrovski
author_facet Dimitrios Vitsios
Ryan S. Dhindsa
Lawrence Middleton
Ayal B. Gussow
Slavé Petrovski
author_sort Dimitrios Vitsios
title Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
title_short Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
title_full Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
title_fullStr Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
title_full_unstemmed Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
title_sort prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c8
work_keys_str_mv AT dimitriosvitsios prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning
AT ryansdhindsa prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning
AT lawrencemiddleton prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning
AT ayalbgussow prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning
AT slavepetrovski prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning
_version_ 1718392850278776832