Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4a6d20095a0b4f49bb6cbd6b031c99c8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4a6d20095a0b4f49bb6cbd6b031c99c82021-12-02T13:33:01ZPrioritizing non-coding regions based on human genomic constraint and sequence context with deep learning10.1038/s41467-021-21790-42041-1723https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c82021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21790-4https://doaj.org/toc/2041-1723Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.Dimitrios VitsiosRyan S. DhindsaLawrence MiddletonAyal B. GussowSlavé PetrovskiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Dimitrios Vitsios Ryan S. Dhindsa Lawrence Middleton Ayal B. Gussow Slavé Petrovski Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
description |
Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity. |
format |
article |
author |
Dimitrios Vitsios Ryan S. Dhindsa Lawrence Middleton Ayal B. Gussow Slavé Petrovski |
author_facet |
Dimitrios Vitsios Ryan S. Dhindsa Lawrence Middleton Ayal B. Gussow Slavé Petrovski |
author_sort |
Dimitrios Vitsios |
title |
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
title_short |
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
title_full |
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
title_fullStr |
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
title_full_unstemmed |
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
title_sort |
prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c8 |
work_keys_str_mv |
AT dimitriosvitsios prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning AT ryansdhindsa prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning AT lawrencemiddleton prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning AT ayalbgussow prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning AT slavepetrovski prioritizingnoncodingregionsbasedonhumangenomicconstraintandsequencecontextwithdeeplearning |
_version_ |
1718392850278776832 |