Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
Intolerance to variation is a strong indicator of disease relevance for coding regions of the human genome. Here, the authors present JARVIS, a deep learning method integrating intolerance to variation in non-coding regions and sequence-specific annotations to infer non-coding variant pathogenicity.
Guardado en:
Autores principales: | Dimitrios Vitsios, Ryan S. Dhindsa, Lawrence Middleton, Ayal B. Gussow, Slavé Petrovski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a6d20095a0b4f49bb6cbd6b031c99c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data
por: Mengmeng Wu, et al.
Publicado: (2017) -
Annotating pathogenic non-coding variants in genic regions
por: Sahar Gelfman, et al.
Publicado: (2017) -
Host gene constraints and genomic context impact the expression and evolution of human microRNAs
por: Gustavo S. França, et al.
Publicado: (2016) -
Biomedical Data Commons (BMDC) prioritizes B-lymphocyte non-coding genetic variants in Type 1 Diabetes.
por: Samantha N Piekos, et al.
Publicado: (2021) -
Combinatorial constraint coding based on the EORS algorithm in DNA storage.
por: Li Xiaoru, et al.
Publicado: (2021)