Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
Designing energy efficient and high performance brain-machine interfaces with millions of recording electrodes for in-situ analysis remains a challenge. Here, the authors develop a memristor-based neural signal analysis system capable of filtering and identifying epilepsy-related brain activities wi...
Guardado en:
Autores principales: | Zhengwu Liu, Jianshi Tang, Bin Gao, Peng Yao, Xinyi Li, Dingkun Liu, Ying Zhou, He Qian, Bo Hong, Huaqiang Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a8f976011da4016a9966b92e61dcf55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
por: Yanan Zhong, et al.
Publicado: (2021) -
Making brain–machine interfaces robust to future neural variability
por: David Sussillo, et al.
Publicado: (2016) -
Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces
por: Jonathan C. Kao, et al.
Publicado: (2017) -
Committee machines—a universal method to deal with non-idealities in memristor-based neural networks
por: D. Joksas, et al.
Publicado: (2020) -
Correction: Corrigendum: Making brain-machine interfaces robust to future neural variability
por: David Sussillo, et al.
Publicado: (2017)