Compatibility evaluation of modified seawater for EOR in carbonate reservoirs through the introduction of polyphosphate compound

Abstract Waterflood-assisted oil recovery with sulfate-spiked seawater would cause incompatibility scaling in carbonate reservoirs and reduce economic benefits. This research investigated the benefits of polyphosphate compounds in reducing scaling potential as well as its effect on oil recovery when...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bisweswar Ghosh, Liying Sun, Nithin Chacko Thomas
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/4a9549fa3db543ec9739df41fcd0c2a1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Waterflood-assisted oil recovery with sulfate-spiked seawater would cause incompatibility scaling in carbonate reservoirs and reduce economic benefits. This research investigated the benefits of polyphosphate compounds in reducing scaling potential as well as its effect on oil recovery when mixed in high sulfate flood water. Severity of scaling potential of sulfate-spiked water in a carbonate reservoir environment was measured, followed by systematic screening of a polyphosphate compound, which successfully inhibited the sulfate scale precipitation at concentration as low as 100 ppm. The new formulation (seawater with four times sulfate and phosphate, SW4SP) was evaluated and compared with benchmark formulation (modified seawater with four times sulfate, SW4S). Contact angle, ζ-potential and drainage studies show that SW4SP changed the rock wettability from oil wet to water wet to a larger degree compared to SW4S. Improved recovery efficiency of SW4SP was confirmed through a set of core flooding studies in the tertiary and quaternary flood modes. Whereas SW4S recovered 7.7% of original oil in place (OOIP), SW4SP recovered about 8% of OOIP in the tertiary mode under approximately identical flow conditions. Flooding with SW4SP in the quaternary mode following a tertiary flood with SW4S on the same core resulted in 1.7% additional oil recovery, showing improved efficiency of the new flood water formulation.