Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
Abstract Seizure detection is a routine process in epilepsy units requiring manual intervention of well-trained specialists. This process could be extensive, inefficient and time-consuming, especially for long term recordings. We proposed an automatic method to detect epileptic seizures using an ima...
Guardado en:
Autores principales: | Catalina Gómez, Pablo Arbeláez, Miguel Navarrete, Catalina Alvarado-Rojas, Michel Le Van Quyen, Mario Valderrama |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a95fabc477b4360a5315b71e255c900 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features
por: Anis Malekzadeh, et al.
Publicado: (2021) -
Seizure Semiology, EEG, and Imaging Findings in Epilepsy Secondary to Mitochondrial Disease
por: Anthony L. Fine, et al.
Publicado: (2021) -
A Comparison Of Conventional Electroencephalography With Amplitude-Integrated EEG In Detection Of Neonatal Seizures
por: Kadivar M, et al.
Publicado: (2019) -
A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG.
por: Md Nurul Ahad Tawhid, et al.
Publicado: (2021)