A model for learning based on the joint estimation of stochasticity and volatility
Human learning depends on opposing effects of two noise factors: volatility and stochasticity. Here the authors present a model of learning that shows how and why joint estimation of these factors is important for understanding healthy and pathological learning.
Guardado en:
Autores principales: | Payam Piray, Nathaniel D. Daw |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a987b3911a248f9a53498078ccdd125 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Linear reinforcement learning in planning, grid fields, and cognitive control
por: Payam Piray, et al.
Publicado: (2021) -
Forecasting Stochastic Volatility Characteristics for the Financial Fossil Oil Market Densities
por: Per Bjarte Solibakke
Publicado: (2021) -
Inflation Volatility and Growth in a Stochastic Small Open Economy: A Mixed Jump-Diffusion Approach
por: Isela Téllez-León, et al.
Publicado: (2011) -
Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases
por: Jennifer L. Asimit, et al.
Publicado: (2019) -
A stochastic metapopulation state-space approach to modeling and estimating COVID-19 spread
por: Yukun Tan, et al.
Publicado: (2021)