Predicting Days to Maturity, Plant Height, and Grain Yield in Soybean: A Machine and Deep Learning Approach Using Multispectral Data
In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an ove...
Guardado en:
Autores principales: | Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Regimar Garcia dos Santos, Ana Paula Marques Ramos, Mayara Maezano Faita Pinheiro, Lucas Prado Osco, Wesley Nunes Gonçalves, Alexsandro Monteiro Carneiro, José Marcato Junior, Hemerson Pistori, Luciano Shozo Shiratsuchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4a9e1fabf11b42c19ae48cb439e10211 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A multispectral 3D-Endoscope for Cholesteatoma Removal
por: Wisotzky Eric L., et al.
Publicado: (2020) -
Lensless Multispectral Camera Based on a Coded Aperture Array
por: Jianwei Wang, et al.
Publicado: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021) -
UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed Canopies for Glyphosate Resistance Detection
por: Austin Eide, et al.
Publicado: (2021) -
Learning a Transform Base for the Multi- to Hyperspectral Sensor Network with K-SVD
por: Thomas Hänel, et al.
Publicado: (2021)