Pruning Filters Base on Extending Filter Group Lasso
Deep Convolution Neural Networks (CNNs) have been widely used in image recognition, while models of CNNs are desired to be more compact as the growing demands arise from various kinds of AI applications. As sparsity is generally accepted as inherent characteristics of the pruned models, L1 based app...
Enregistré dans:
Auteurs principaux: | Zhihong Xie, Ping Li, Fei Li, Changyi Guo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4aad1c6d7ed1463ab9a9d1d2e730ce54 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Attitude Estimation Algorithm of Portable Mobile Robot Based on Complementary Filter
par: Mei Liu, et autres
Publié: (2021) -
Noise and sensitivity comparison for different BP filter designs
par: Zoran Šverko, et autres
Publié: (2021) -
Exploring Pathway-Based Group Lasso for Cancer Survival Analysis: A Special Case of Multi-Task Learning
par: Gabriela Malenová, et autres
Publié: (2021) -
MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System
par: Amirsoheil Honarbari, et autres
Publié: (2021) -
Weak implicative filters in quasi-ordered residuated systems
par: Romano,Daniel A.
Publié: (2021)