Reducing the Training Samples for Damage Detection of Existing Buildings through Self-Space Approximation Techniques
Data-driven methodologies are among the most effective tools for damage detection of complex existing buildings, such as heritage structures. Indeed, the historical evolution and actual behaviour of these assets are often unknown, no physical models are available, and the assessment must be performe...
Guardado en:
Autores principales: | Alberto Barontini, Maria Giovanna Masciotta, Paulo Amado-Mendes, Luís F. Ramos, Paulo B. Lourenço |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4aafa7908e6446418c67584c51d94c9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying Damaged Buildings in Aerial Images Using the Object Detection Method
por: Lingfei Shi, et al.
Publicado: (2021) -
Damage Detection in Fluid-Conveying Pipe Using Dynamic Interaction Tracking of Moving Load Method
por: Mehdi Koohdaragh, et al.
Publicado: (2016) -
Damage Detection of Reinforced Concrete Shear Walls Using Mathematical Transformations
por: Hosein Naderpour, et al.
Publicado: (2017) -
Integral assessment of active and passive survey methods for large-scale monitoring of mammal occurrence in Mediterranean landscapes
por: Bruno D. Suárez-Tangil, et al.
Publicado: (2021) -
Low cost health monitoring of cable stayed bridges using synchrosqueezed wavelet transform and nonlinear principal component analysis
por: Ehsan Darvishan
Publicado: (2019)