Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature

Valerie Joers,1,2 Scott Vermilyea,1,2 Kristine Dilley,1 Marina E Emborg1–3 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, 2Neuroscience Training Program, 3Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA Back...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joers V, Vermilyea S, Dilley K, Emborg ME
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/4ab618f5fc29445f8317ebc2d9a9e332
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ab618f5fc29445f8317ebc2d9a9e332
record_format dspace
spelling oai:doaj.org-article:4ab618f5fc29445f8317ebc2d9a9e3322021-12-02T00:35:14ZSystemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature1178-7031https://doaj.org/article/4ab618f5fc29445f8317ebc2d9a9e3322014-09-01T00:00:00Zhttp://www.dovepress.com/systemic-administration-of-6-ohda-to-rhesus-monkeys-upregulates-hla-dr-peer-reviewed-article-JIRhttps://doaj.org/toc/1178-7031 Valerie Joers,1,2 Scott Vermilyea,1,2 Kristine Dilley,1 Marina E Emborg1–3 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, 2Neuroscience Training Program, 3Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA Background: We recently developed a nonhuman primate model of cardiac dysautonomia by systemic dosing of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The aim of this study was to assess whether systemic 6-OHDA affects the central nervous system of nonhuman primates, in particular the dopaminergic nigrostriatal system. Methods: Brain sections from adult rhesus monkeys that received systemic 6-OHDA (50 mg/kg intravenously; n=5) and were necropsied 3 months later, as well as normal controls (n=5) were used in this study. Tissue was cut frozen at 40 µm on a sliding microtome, processed for immunohistochemistry, and blindly evaluated. Results: Neither the optical density of tyrosine hydroxylase immunoreactivity (TH-ir; a dopaminergic neuronal marker) in the caudate and putamen nucleus nor the TH-ir cell number and volume in the substantia nigra showed significant differences between groups. Yet within groups, statistical analysis revealed significant individual differences in the 6-OHDA-treated group, with two animals showing a lower cell count and volume. Optical density quantification of α-synuclein-ir in the substantia nigra did not show differences between groups. As α-synuclein intracellular distribution was noted to vary between animals, it was further evaluated with a semiquantitative scale. A greater intensity and presence of α-synuclein-positive nigral cell bodies was associated with larger TH-positive nigral cell volumes. Increased human leukocyte antigen (HLA-DR; a microglial marker) expression was observed in 6-OHDA-treated animals compared with controls. HLA-DR-ir was primarily localized in endothelial cells and perivascular spaces throughout cortical and subcortical structures. Semiquantitative evaluation using a rating scale revealed higher HLA-DR-ir in blood vessels of 6-OHDA-treated animals than controls, specifically in animals with the lowest number of dopaminergic nigral neurons. Conclusion: Our results demonstrate that systemic 6-OHDA administration to rhesus monkeys can affect the dopaminergic nigrostriatal system and upregulate inflammatory markers in the cerebrovasculature that persist 3 months post neurotoxin challenge. The variability of the subject response suggests differences in individual sensitivity to 6-OHDA. Keywords: 6-hydroxydopamine, blood–brain barrier, nonhuman primates, neuroinflammation, parkinsonismJoers VVermilyea SDilley KEmborg MEDove Medical PressarticlePathologyRB1-214Therapeutics. PharmacologyRM1-950ENJournal of Inflammation Research, Vol 2014, Iss default, Pp 139-149 (2014)
institution DOAJ
collection DOAJ
language EN
topic Pathology
RB1-214
Therapeutics. Pharmacology
RM1-950
spellingShingle Pathology
RB1-214
Therapeutics. Pharmacology
RM1-950
Joers V
Vermilyea S
Dilley K
Emborg ME
Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
description Valerie Joers,1,2 Scott Vermilyea,1,2 Kristine Dilley,1 Marina E Emborg1–3 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, 2Neuroscience Training Program, 3Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA Background: We recently developed a nonhuman primate model of cardiac dysautonomia by systemic dosing of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The aim of this study was to assess whether systemic 6-OHDA affects the central nervous system of nonhuman primates, in particular the dopaminergic nigrostriatal system. Methods: Brain sections from adult rhesus monkeys that received systemic 6-OHDA (50 mg/kg intravenously; n=5) and were necropsied 3 months later, as well as normal controls (n=5) were used in this study. Tissue was cut frozen at 40 µm on a sliding microtome, processed for immunohistochemistry, and blindly evaluated. Results: Neither the optical density of tyrosine hydroxylase immunoreactivity (TH-ir; a dopaminergic neuronal marker) in the caudate and putamen nucleus nor the TH-ir cell number and volume in the substantia nigra showed significant differences between groups. Yet within groups, statistical analysis revealed significant individual differences in the 6-OHDA-treated group, with two animals showing a lower cell count and volume. Optical density quantification of α-synuclein-ir in the substantia nigra did not show differences between groups. As α-synuclein intracellular distribution was noted to vary between animals, it was further evaluated with a semiquantitative scale. A greater intensity and presence of α-synuclein-positive nigral cell bodies was associated with larger TH-positive nigral cell volumes. Increased human leukocyte antigen (HLA-DR; a microglial marker) expression was observed in 6-OHDA-treated animals compared with controls. HLA-DR-ir was primarily localized in endothelial cells and perivascular spaces throughout cortical and subcortical structures. Semiquantitative evaluation using a rating scale revealed higher HLA-DR-ir in blood vessels of 6-OHDA-treated animals than controls, specifically in animals with the lowest number of dopaminergic nigral neurons. Conclusion: Our results demonstrate that systemic 6-OHDA administration to rhesus monkeys can affect the dopaminergic nigrostriatal system and upregulate inflammatory markers in the cerebrovasculature that persist 3 months post neurotoxin challenge. The variability of the subject response suggests differences in individual sensitivity to 6-OHDA. Keywords: 6-hydroxydopamine, blood–brain barrier, nonhuman primates, neuroinflammation, parkinsonism
format article
author Joers V
Vermilyea S
Dilley K
Emborg ME
author_facet Joers V
Vermilyea S
Dilley K
Emborg ME
author_sort Joers V
title Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
title_short Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
title_full Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
title_fullStr Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
title_full_unstemmed Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature
title_sort systemic administration of 6-ohda to rhesus monkeys upregulates hla-dr expression in brain microvasculature
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/4ab618f5fc29445f8317ebc2d9a9e332
work_keys_str_mv AT joersv systemicadministrationof6ohdatorhesusmonkeysupregulateshladrexpressioninbrainmicrovasculature
AT vermilyeas systemicadministrationof6ohdatorhesusmonkeysupregulateshladrexpressioninbrainmicrovasculature
AT dilleyk systemicadministrationof6ohdatorhesusmonkeysupregulateshladrexpressioninbrainmicrovasculature
AT emborgme systemicadministrationof6ohdatorhesusmonkeysupregulateshladrexpressioninbrainmicrovasculature
_version_ 1718403613740498944