Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies
Recent years have witnessed attempts to employ a system with rigid and extremely flexible components (SREF), usually consisting of strings, membranes, and so on, to realize huge structures for spacecraft in orbit. In general, such flexible components have two states, i.e., with and without tensional...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Japan Society of Mechanical Engineers
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4abc473f6d694ff4946b8fd01b9ab413 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4abc473f6d694ff4946b8fd01b9ab413 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4abc473f6d694ff4946b8fd01b9ab4132021-11-29T06:09:58ZMethod for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies2187-974510.1299/mej.21-00015https://doaj.org/article/4abc473f6d694ff4946b8fd01b9ab4132021-07-01T00:00:00Zhttps://www.jstage.jst.go.jp/article/mej/8/4/8_21-00015/_pdf/-char/enhttps://doaj.org/toc/2187-9745Recent years have witnessed attempts to employ a system with rigid and extremely flexible components (SREF), usually consisting of strings, membranes, and so on, to realize huge structures for spacecraft in orbit. In general, such flexible components have two states, i.e., with and without tensional force. Previously, the authors proposed an effective method for analyzing SREF motion, which is based on an analogy between the state transitions of the SREF and contact problem of rigid bodies. The state transitions of the SREF are detected via a linear complementarity problem that is used for contact problem in the analysis method proposed by Pfeiffer et al. (Pfeiffer and Glocker, 1996). The authors had applied this method to an SREF consisting of two masses and two strings, where the motion of the system was limited to one dimension. In this study, the method is extended to an SREF having planar motion. As an analysis object, an SREF consisting of two masses and two strings is introduced. Finally, the results of numerical analyses are compared with those of an experiment under same parameters, and the validation of the proposed method is demonstrated by the comparison.Shuntaro OOSHIMAYoshiki SUGAWARAThe Japan Society of Mechanical Engineersarticleflexible multibody systemcontact problemlinear complementarity problemunilateral contactstringnumerical analysisplanar motionexperimental validationMechanical engineering and machineryTJ1-1570ENMechanical Engineering Journal, Vol 8, Iss 4, Pp 21-00015-21-00015 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
flexible multibody system contact problem linear complementarity problem unilateral contact string numerical analysis planar motion experimental validation Mechanical engineering and machinery TJ1-1570 |
spellingShingle |
flexible multibody system contact problem linear complementarity problem unilateral contact string numerical analysis planar motion experimental validation Mechanical engineering and machinery TJ1-1570 Shuntaro OOSHIMA Yoshiki SUGAWARA Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
description |
Recent years have witnessed attempts to employ a system with rigid and extremely flexible components (SREF), usually consisting of strings, membranes, and so on, to realize huge structures for spacecraft in orbit. In general, such flexible components have two states, i.e., with and without tensional force. Previously, the authors proposed an effective method for analyzing SREF motion, which is based on an analogy between the state transitions of the SREF and contact problem of rigid bodies. The state transitions of the SREF are detected via a linear complementarity problem that is used for contact problem in the analysis method proposed by Pfeiffer et al. (Pfeiffer and Glocker, 1996). The authors had applied this method to an SREF consisting of two masses and two strings, where the motion of the system was limited to one dimension. In this study, the method is extended to an SREF having planar motion. As an analysis object, an SREF consisting of two masses and two strings is introduced. Finally, the results of numerical analyses are compared with those of an experiment under same parameters, and the validation of the proposed method is demonstrated by the comparison. |
format |
article |
author |
Shuntaro OOSHIMA Yoshiki SUGAWARA |
author_facet |
Shuntaro OOSHIMA Yoshiki SUGAWARA |
author_sort |
Shuntaro OOSHIMA |
title |
Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
title_short |
Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
title_full |
Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
title_fullStr |
Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
title_full_unstemmed |
Method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
title_sort |
method for analysis of planar motion of system with rigid and extremely flexible components via analogy with contact problem of rigid bodies |
publisher |
The Japan Society of Mechanical Engineers |
publishDate |
2021 |
url |
https://doaj.org/article/4abc473f6d694ff4946b8fd01b9ab413 |
work_keys_str_mv |
AT shuntaroooshima methodforanalysisofplanarmotionofsystemwithrigidandextremelyflexiblecomponentsviaanalogywithcontactproblemofrigidbodies AT yoshikisugawara methodforanalysisofplanarmotionofsystemwithrigidandextremelyflexiblecomponentsviaanalogywithcontactproblemofrigidbodies |
_version_ |
1718407583133335552 |