Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data
Abstract Constantly decreasing costs of high-throughput profiling on many molecular levels generate vast amounts of multi-omics data. Studying one biomedical question on two or more omic levels provides deeper insights into underlying molecular processes or disease pathophysiology. For the majority...
Guardado en:
Autores principales: | Christoph Ogris, Yue Hu, Janine Arloth, Nikola S. Müller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ae008adfebe443dacd926946dbcc490 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single nucleus multi-omics regulatory landscape of the murine pituitary
por: Frederique Ruf-Zamojski, et al.
Publicado: (2021) -
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
por: Longqi Liu, et al.
Publicado: (2019) -
Multi-omic regulatory networks capture downstream effects of kinase inhibition in Mycobacterium tuberculosis
por: Albert T. Young, et al.
Publicado: (2021) -
EMPress Enables Tree-Guided, Interactive, and Exploratory Analyses of Multi-omic Data Sets
por: Kalen Cantrell, et al.
Publicado: (2021) -
Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle.
por: Angela Cánovas, et al.
Publicado: (2014)