Disturbance Detection of a Power Transmission System Based on the Enhanced Canonical Variate Analysis Method

Aiming at the characteristics of dynamic correlation, periodic oscillation, and weak disturbance symptom of power transmission system data, this paper proposes an enhanced canonical variate analysis (CVA) method, called SLCVA<i>k</i>NN, for monitoring the disturbances of power transmissi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shubin Wang, Yukun Tian, Xiaogang Deng, Qianlei Cao, Lei Wang, Pengxiang Sun
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4af2f4c10c4e48bb9856d70791c7c335
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Aiming at the characteristics of dynamic correlation, periodic oscillation, and weak disturbance symptom of power transmission system data, this paper proposes an enhanced canonical variate analysis (CVA) method, called SLCVA<i>k</i>NN, for monitoring the disturbances of power transmission systems. In the proposed method, CVA is first used to extract the dynamic features by analyzing the data correlation and establish a statistical model with two monitoring statistics <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mn>2</mn></msup></semantics></math></inline-formula> and <i>Q</i>. Then, in order to handling the periodic oscillation of power data, the two statistics are reconstructed in phase space, and the <i>k</i>-nearest neighbor (<i>k</i>NN) technique is applied to design the statistics nearest neighbor distance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>Q</mi></mrow></semantics></math></inline-formula> as the enhanced monitoring indices. Further considering the detection difficulty of weak disturbances with the insignificant symptoms, statistical local analysis (SLA) is integrated to construct the primary and improved residual vectors of the CVA dynamic features, which are capable to prompt the disturbance detection sensitivity. The verification results on the real industrial data show that the SLCVA<i>k</i>NN method can detect the occurrence of power system disturbance more effectively than the traditional data-driven monitoring methods.