Disturbance Detection of a Power Transmission System Based on the Enhanced Canonical Variate Analysis Method
Aiming at the characteristics of dynamic correlation, periodic oscillation, and weak disturbance symptom of power transmission system data, this paper proposes an enhanced canonical variate analysis (CVA) method, called SLCVA<i>k</i>NN, for monitoring the disturbances of power transmissi...
Guardado en:
Autores principales: | Shubin Wang, Yukun Tian, Xiaogang Deng, Qianlei Cao, Lei Wang, Pengxiang Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4af2f4c10c4e48bb9856d70791c7c335 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors
por: Jeong-Hun Kim, et al.
Publicado: (2021) -
Algorithm optimization and anomaly detection simulation based on extended Jarvis-Patrick clustering and outlier detection
por: Wei Wang, et al.
Publicado: (2022) -
Fault Diagnosis of Permanent Magnet DC Motors Based on Multi-Segment Feature Extraction
por: Lixin Lu, et al.
Publicado: (2021) -
ML Algorithm Performance to Classify MCS Schemes During UACN Link Adaptation
por: Mst. Najnin Sultana, et al.
Publicado: (2020) -
K-Nearest Neighbor for Recognize Handwritten Arabic Character
por: Muhammad Athoillah
Publicado: (2019)