Convolutional Autoencoding and Gaussian Mixture Clustering for Unsupervised Beat-to-Beat Heart Rate Estimation of Electrocardiograms from Wearable Sensors
Heart rate is one of the most important diagnostic bases for cardiovascular disease. This paper introduces a deep autoencoding strategy into feature extraction of electrocardiogram (ECG) signals, and proposes a beat-to-beat heart rate estimation method based on convolution autoencoding and Gaussian...
Guardado en:
Autores principales: | Jun Zhong, Dong Hai, Jiaxin Cheng, Changzhe Jiao, Shuiping Gou, Yongfeng Liu, Hong Zhou, Wenliang Zhu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4afda4a83b3a4b41b7586247173ede0e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application
por: Mehran Azimbagirad, et al.
Publicado: (2021) -
Predictive Maintenance: An Autoencoder Anomaly-Based Approach for a 3 DoF Delta Robot
por: Kiavash Fathi, et al.
Publicado: (2021) -
A Principal Component Analysis-Boosted Dynamic Gaussian Mixture Clustering Model for Ignition Factors of Brazil’s Rainforests
por: Maofa Wang, et al.
Publicado: (2021) -
Learned Image Compression With Separate Hyperprior Decoders
por: Zhao Zan, et al.
Publicado: (2021)