Anomaly Detection on Data Streams for Smart Agriculture

Smart agriculture technologies are effective instruments for increasing farm sustainability and production. They generate many spatial, temporal, and time-series data streams that, when analysed, can reveal several issues on farm productivity and efficiency. In this context, the detection of anomali...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juliet Chebet Moso, Stéphane Cormier, Cyril de Runz, Hacène Fouchal, John Mwangi Wandeto
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4b34c692a13f496883234f176f9590fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4b34c692a13f496883234f176f9590fc
record_format dspace
spelling oai:doaj.org-article:4b34c692a13f496883234f176f9590fc2021-11-25T15:58:54ZAnomaly Detection on Data Streams for Smart Agriculture10.3390/agriculture111110832077-0472https://doaj.org/article/4b34c692a13f496883234f176f9590fc2021-11-01T00:00:00Zhttps://www.mdpi.com/2077-0472/11/11/1083https://doaj.org/toc/2077-0472Smart agriculture technologies are effective instruments for increasing farm sustainability and production. They generate many spatial, temporal, and time-series data streams that, when analysed, can reveal several issues on farm productivity and efficiency. In this context, the detection of anomalies can help in the identification of observations that deviate from the norm. This paper proposes an adaptation of an ensemble anomaly detector called enhanced locally selective combination in parallel outlier ensembles (ELSCP). On this basis, we define an unsupervised data-driven methodology for smart-farming temporal data that is applied in two case studies. The first considers harvest data including combine-harvester Global Positioning System (GPS) traces. The second is dedicated to crop data where we study the link between crop state (damaged or not) and detected anomalies. Our experiments show that our methodology achieved interesting performance with Area Under the Curve of Precision-Recall (AUCPR) score of 0.972 in the combine-harvester dataset, which is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>58.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> better than that of the second-best approach. In the crop dataset, our analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the detected anomalies could be directly linked to crop damage. Therefore, anomaly detection could be integrated in the decision process of farm operators to improve harvesting efficiency and crop health.Juliet Chebet MosoStéphane CormierCyril de RunzHacène FouchalJohn Mwangi WandetoMDPI AGarticleanomaly detectiondata streamsprecision farmingunsupervised learningAgriculture (General)S1-972ENAgriculture, Vol 11, Iss 1083, p 1083 (2021)
institution DOAJ
collection DOAJ
language EN
topic anomaly detection
data streams
precision farming
unsupervised learning
Agriculture (General)
S1-972
spellingShingle anomaly detection
data streams
precision farming
unsupervised learning
Agriculture (General)
S1-972
Juliet Chebet Moso
Stéphane Cormier
Cyril de Runz
Hacène Fouchal
John Mwangi Wandeto
Anomaly Detection on Data Streams for Smart Agriculture
description Smart agriculture technologies are effective instruments for increasing farm sustainability and production. They generate many spatial, temporal, and time-series data streams that, when analysed, can reveal several issues on farm productivity and efficiency. In this context, the detection of anomalies can help in the identification of observations that deviate from the norm. This paper proposes an adaptation of an ensemble anomaly detector called enhanced locally selective combination in parallel outlier ensembles (ELSCP). On this basis, we define an unsupervised data-driven methodology for smart-farming temporal data that is applied in two case studies. The first considers harvest data including combine-harvester Global Positioning System (GPS) traces. The second is dedicated to crop data where we study the link between crop state (damaged or not) and detected anomalies. Our experiments show that our methodology achieved interesting performance with Area Under the Curve of Precision-Recall (AUCPR) score of 0.972 in the combine-harvester dataset, which is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>58.7</mn><mo>%</mo></mrow></semantics></math></inline-formula> better than that of the second-best approach. In the crop dataset, our analysis showed that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>30</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the detected anomalies could be directly linked to crop damage. Therefore, anomaly detection could be integrated in the decision process of farm operators to improve harvesting efficiency and crop health.
format article
author Juliet Chebet Moso
Stéphane Cormier
Cyril de Runz
Hacène Fouchal
John Mwangi Wandeto
author_facet Juliet Chebet Moso
Stéphane Cormier
Cyril de Runz
Hacène Fouchal
John Mwangi Wandeto
author_sort Juliet Chebet Moso
title Anomaly Detection on Data Streams for Smart Agriculture
title_short Anomaly Detection on Data Streams for Smart Agriculture
title_full Anomaly Detection on Data Streams for Smart Agriculture
title_fullStr Anomaly Detection on Data Streams for Smart Agriculture
title_full_unstemmed Anomaly Detection on Data Streams for Smart Agriculture
title_sort anomaly detection on data streams for smart agriculture
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/4b34c692a13f496883234f176f9590fc
work_keys_str_mv AT julietchebetmoso anomalydetectionondatastreamsforsmartagriculture
AT stephanecormier anomalydetectionondatastreamsforsmartagriculture
AT cyrilderunz anomalydetectionondatastreamsforsmartagriculture
AT hacenefouchal anomalydetectionondatastreamsforsmartagriculture
AT johnmwangiwandeto anomalydetectionondatastreamsforsmartagriculture
_version_ 1718413377911390208