Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.

CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B&#...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: John F Heidelberg, William C Nelson, Thomas Schoenfeld, Devaki Bhaya
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4b4ab6e50252442887878c9a177946fb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4b4ab6e50252442887878c9a177946fb
record_format dspace
spelling oai:doaj.org-article:4b4ab6e50252442887878c9a177946fb2021-11-25T06:17:49ZGerm warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.1932-620310.1371/journal.pone.0004169https://doaj.org/article/4b4ab6e50252442887878c9a177946fb2009-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19132092/?tool=EBIhttps://doaj.org/toc/1932-6203CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B') as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B' genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B', but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as "viritopes" to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.John F HeidelbergWilliam C NelsonThomas SchoenfeldDevaki BhayaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 4, Iss 1, p e4169 (2009)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
John F Heidelberg
William C Nelson
Thomas Schoenfeld
Devaki Bhaya
Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
description CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B') as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B' genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B', but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as "viritopes" to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.
format article
author John F Heidelberg
William C Nelson
Thomas Schoenfeld
Devaki Bhaya
author_facet John F Heidelberg
William C Nelson
Thomas Schoenfeld
Devaki Bhaya
author_sort John F Heidelberg
title Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
title_short Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
title_full Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
title_fullStr Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
title_full_unstemmed Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.
title_sort germ warfare in a microbial mat community: crisprs provide insights into the co-evolution of host and viral genomes.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/4b4ab6e50252442887878c9a177946fb
work_keys_str_mv AT johnfheidelberg germwarfareinamicrobialmatcommunitycrisprsprovideinsightsintothecoevolutionofhostandviralgenomes
AT williamcnelson germwarfareinamicrobialmatcommunitycrisprsprovideinsightsintothecoevolutionofhostandviralgenomes
AT thomasschoenfeld germwarfareinamicrobialmatcommunitycrisprsprovideinsightsintothecoevolutionofhostandviralgenomes
AT devakibhaya germwarfareinamicrobialmatcommunitycrisprsprovideinsightsintothecoevolutionofhostandviralgenomes
_version_ 1718413923020963840