Weighted change-point method for detecting differential gene expression in breast cancer microarray data.
In previous work, we proposed a method for detecting differential gene expression based on change-point of expression profile. This non-parametric change-point method gave promising result in both simulation study and public dataset experiment. However, the performance is still limited by the less s...
Guardado en:
Autores principales: | Yao Wang, Guang Sun, Zhaohua Ji, Chong Xing, Yanchun Liang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4b55832ff38b47b5906c1336ab8b0797 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A method for detecting long non-coding RNAs with tiled RNA expression microarrays.
por: Sigrun Helga Lund, et al.
Publicado: (2014) -
Optimization based tumor classification from microarray gene expression data.
por: Onur Dagliyan, et al.
Publicado: (2011) -
MIDClass: microarray data classification by association rules and gene expression intervals.
por: Rosalba Giugno, et al.
Publicado: (2013) -
Construction, visualisation, and clustering of transcription networks from microarray expression data.
por: Tom C Freeman, et al.
Publicado: (2007) -
Microarray profiling and functional analysis of differentially expressed plasma exosomal circular RNAs in Graves' disease
por: Sun,Ying, et al.
Publicado: (2020)