State-Burst Feedback Control for Fault Recovery of Input/State Asynchronous Sequential Machines
Static corrective controllers are more efficient than dynamic ones since they consist of only logic elements, whereas their existence conditions are more restrictive. In this paper, we present a static corrective control scheme for fault diagnosis and fault tolerant control of input/state asynchrono...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4b5594b88f26488589a7faa36a1133e1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Static corrective controllers are more efficient than dynamic ones since they consist of only logic elements, whereas their existence conditions are more restrictive. In this paper, we present a static corrective control scheme for fault diagnosis and fault tolerant control of input/state asynchronous sequential machines (ASMs) vulnerable to transient faults. The design flexibility of static controllers is enlarged by virtue of using a diagnoser and state bursts. Necessary and sufficient conditions for the existence of a diagnoser and static fault tolerant controller are presented, and the process of controller synthesis is addressed based on the derived condition. Illustrative examples on practical ASMs are provided to show the applicability of the proposed scheme. |
---|