Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective

In this article, we study activity recognition in the context of sensor-rich environments. In these environments, many different constraints arise at various levels during the data generation process, such as the intrinsic characteristics of the sensing devices, their energy and computational constr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Massinissa Hamidi, Aomar Osmani
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/4b5c84aed66443ad8494dd5dfe04e341
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4b5c84aed66443ad8494dd5dfe04e341
record_format dspace
spelling oai:doaj.org-article:4b5c84aed66443ad8494dd5dfe04e3412021-11-11T19:14:06ZHuman Activity Recognition: A Dynamic Inductive Bias Selection Perspective10.3390/s212172781424-8220https://doaj.org/article/4b5c84aed66443ad8494dd5dfe04e3412021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7278https://doaj.org/toc/1424-8220In this article, we study activity recognition in the context of sensor-rich environments. In these environments, many different constraints arise at various levels during the data generation process, such as the intrinsic characteristics of the sensing devices, their energy and computational constraints, and their collective (collaborative) dimension. These constraints have a fundamental impact on the final activity recognition models as the quality of the data, its availability, and its reliability, among other things, are not ensured during model deployment in real-world configurations. Current approaches for activity recognition rely on the activity recognition chain which defines several steps that the sensed data undergo: This is an inductive process that involves exploring a hypothesis space to find a theory able to explain the observations. For activity recognition to be effective and robust, this inductive process must consider the constraints at all levels and model them explicitly. Whether it is a bias related to sensor measurement, transmission protocol, sensor deployment topology, heterogeneity, dynamicity, or stochastic effects, it is essential to understand their substantial impact on the quality of the data and ultimately on activity recognition models. This study highlights the need to exhibit the different types of biases arising in real situations so that machine learning models, e.g., can adapt to the dynamicity of these environments, resist sensor failures, and follow the evolution of the sensors’ topology. We propose a metamodeling approach in which these biases are specified as hyperparameters that can control the structure of the activity recognition models. Via these hyperparameters, it becomes easier to optimize the inductive processes, reason about them, and incorporate additional knowledge. It also provides a principled strategy to adapt the models to the evolutions of the environment. We illustrate our approach on the SHL dataset, which features motion sensor data for a set of human activities collected in real conditions. The obtained results make a case for the proposed metamodeling approach; noticeably, the robustness gains achieved when the deployed models are confronted with the evolution of the initial sensing configurations. The trade-offs exhibited and the broader implications of the proposed approach are discussed with alternative techniques to encode and incorporate knowledge into activity recognition models.Massinissa HamidiAomar OsmaniMDPI AGarticlehuman activity recognitioninductive biasmeta-learninghyperparameter optimizationsensor-rich environmentssensor characteristicsChemical technologyTP1-1185ENSensors, Vol 21, Iss 7278, p 7278 (2021)
institution DOAJ
collection DOAJ
language EN
topic human activity recognition
inductive bias
meta-learning
hyperparameter optimization
sensor-rich environments
sensor characteristics
Chemical technology
TP1-1185
spellingShingle human activity recognition
inductive bias
meta-learning
hyperparameter optimization
sensor-rich environments
sensor characteristics
Chemical technology
TP1-1185
Massinissa Hamidi
Aomar Osmani
Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
description In this article, we study activity recognition in the context of sensor-rich environments. In these environments, many different constraints arise at various levels during the data generation process, such as the intrinsic characteristics of the sensing devices, their energy and computational constraints, and their collective (collaborative) dimension. These constraints have a fundamental impact on the final activity recognition models as the quality of the data, its availability, and its reliability, among other things, are not ensured during model deployment in real-world configurations. Current approaches for activity recognition rely on the activity recognition chain which defines several steps that the sensed data undergo: This is an inductive process that involves exploring a hypothesis space to find a theory able to explain the observations. For activity recognition to be effective and robust, this inductive process must consider the constraints at all levels and model them explicitly. Whether it is a bias related to sensor measurement, transmission protocol, sensor deployment topology, heterogeneity, dynamicity, or stochastic effects, it is essential to understand their substantial impact on the quality of the data and ultimately on activity recognition models. This study highlights the need to exhibit the different types of biases arising in real situations so that machine learning models, e.g., can adapt to the dynamicity of these environments, resist sensor failures, and follow the evolution of the sensors’ topology. We propose a metamodeling approach in which these biases are specified as hyperparameters that can control the structure of the activity recognition models. Via these hyperparameters, it becomes easier to optimize the inductive processes, reason about them, and incorporate additional knowledge. It also provides a principled strategy to adapt the models to the evolutions of the environment. We illustrate our approach on the SHL dataset, which features motion sensor data for a set of human activities collected in real conditions. The obtained results make a case for the proposed metamodeling approach; noticeably, the robustness gains achieved when the deployed models are confronted with the evolution of the initial sensing configurations. The trade-offs exhibited and the broader implications of the proposed approach are discussed with alternative techniques to encode and incorporate knowledge into activity recognition models.
format article
author Massinissa Hamidi
Aomar Osmani
author_facet Massinissa Hamidi
Aomar Osmani
author_sort Massinissa Hamidi
title Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
title_short Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
title_full Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
title_fullStr Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
title_full_unstemmed Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective
title_sort human activity recognition: a dynamic inductive bias selection perspective
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/4b5c84aed66443ad8494dd5dfe04e341
work_keys_str_mv AT massinissahamidi humanactivityrecognitionadynamicinductivebiasselectionperspective
AT aomarosmani humanactivityrecognitionadynamicinductivebiasselectionperspective
_version_ 1718431582346280960