Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
Abstract Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MS...
Guardado en:
Autores principales: | Aashish Jain, Genki Terashi, Yuki Kagaya, Sai Raghavendra Maddhuri Venkata Subramaniya, Charles Christoffer, Daisuke Kihara |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4b802a2160964401b3d88deddd0fef82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning
por: Xiao Wang, et al.
Publicado: (2021) -
VESPER: global and local cryo-EM map alignment using local density vectors
por: Xusi Han, et al.
Publicado: (2021) -
De novo main-chain modeling for EM maps using MAINMAST
por: Genki Terashi, et al.
Publicado: (2018) -
Analyzing and synthesizing phylogenies using tree alignment graphs.
por: Stephen A Smith, et al.
Publicado: (2013) -
Alignment of liquid crystals by polymers with residual amounts of solvents
por: Alexander M. Parshin, et al.
Publicado: (2017)