Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS

Jingyi Ye,1,* Huiyi Wu,1,* Chuanli Huang,1 Wanting Lin,2 Caifeng Zhang,1 Bei Huang,2 Banyi Lu,2 Hongyu Xu,2 Xiaoling Li,3 Xiaoying Long1,41Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2Departmen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ye J, Wu H, Huang C, Lin W, Zhang C, Huang B, Lu B, Xu H, Li X, Long X
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/4b8f3730ac66483daf87aad5f4fecd51
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4b8f3730ac66483daf87aad5f4fecd51
record_format dspace
spelling oai:doaj.org-article:4b8f3730ac66483daf87aad5f4fecd512021-12-02T06:38:51ZComparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS1178-2013https://doaj.org/article/4b8f3730ac66483daf87aad5f4fecd512019-07-01T00:00:00Zhttps://www.dovepress.com/comparisons-of-in-vitro-fickrsquos-first-law-lipolysis-and-in-vivo-rat-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jingyi Ye,1,* Huiyi Wu,1,* Chuanli Huang,1 Wanting Lin,2 Caifeng Zhang,1 Bei Huang,2 Banyi Lu,2 Hongyu Xu,2 Xiaoling Li,3 Xiaoying Long1,41Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 3Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA; 4Department of Oral Delivery, Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China*These authors contributed equally to this workPurpose: The objective of this study was to compare the in vitro Fick’s first law, in vitro lipolysis, and in vivo rat assays for oral absorption of Biopharmaceutical Classification Systems Class II (BCS II) drugs in self-nanoemulsifying drug delivery system (SNEDDS), and studied drugs and oils properties effects on the absorption.Methods: The transport abilities of griseofulvin (GRI), phenytoin (PHE), indomethacin (IND), and ketoprofen (KET) in saturated water solutions and SNEDDS were investigated using the in vitro Madin-Darby canine kidney cell model. GRI and cinnarizine (CIN) in medium-chain triglycerides (MCT)-SNEDDS and long-chain triglycerides (LCT)-SNEDDS were administered in the in vivo SD rat and in vitro lipolysis models to compare the oral absorption and the distribution behaviors in GIT and build an in vitro-in vivo correlation (IVIVC).Results: In the cell model, the solubility of GRI, PHE, IND, and KET increased 6–8 fold by SNEDDS, but their permeability were only 18%, 4%, 8%, and 33% of those of their saturated water solutions, respectively. However, in vivo absorption of GRI-SNEDDS was twice that of the GRI suspension and those of CIN-SNEDDS were 15–21 fold those of the CIN suspension. In the lipolysis model, the GRI% in aqueous and pellet phases of MCT were similar to that in LCT. In contrast, the CIN% in the aqueous and pellet phases were decreased but that of the lipid phase increased. In addition, an IVIVC was found between the CIN% in the lipid phase and in vivo relative oral bioavailability (Fr).Conclusion: The in vitro cell model was still a suitable tool to study drug properties effects on biofilm transport and SNEDDS absorption mechanisms. The in vitro lipolysis model provided superior oral absorption simulation of SNEDDS and helped to build correlation with in vivo rats. The oral drug absorption was affected by drug and oil properties in SNEDDS.Keywords: SNEDDS, MDCK cell model, in vivo rat model, in vitro lipolysis, in vitro-in vivo correlationYe JWu HHuang CLin WZhang CHuang BLu BXu HLi XLong XDove Medical PressarticleSNEDDSMDCK cell modelin vivo rat modelin vitro lipolysisin vitro-in vivo correlationMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 5623-5636 (2019)
institution DOAJ
collection DOAJ
language EN
topic SNEDDS
MDCK cell model
in vivo rat model
in vitro lipolysis
in vitro-in vivo correlation
Medicine (General)
R5-920
spellingShingle SNEDDS
MDCK cell model
in vivo rat model
in vitro lipolysis
in vitro-in vivo correlation
Medicine (General)
R5-920
Ye J
Wu H
Huang C
Lin W
Zhang C
Huang B
Lu B
Xu H
Li X
Long X
Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
description Jingyi Ye,1,* Huiyi Wu,1,* Chuanli Huang,1 Wanting Lin,2 Caifeng Zhang,1 Bei Huang,2 Banyi Lu,2 Hongyu Xu,2 Xiaoling Li,3 Xiaoying Long1,41Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 2Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China; 3Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA; 4Department of Oral Delivery, Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China*These authors contributed equally to this workPurpose: The objective of this study was to compare the in vitro Fick’s first law, in vitro lipolysis, and in vivo rat assays for oral absorption of Biopharmaceutical Classification Systems Class II (BCS II) drugs in self-nanoemulsifying drug delivery system (SNEDDS), and studied drugs and oils properties effects on the absorption.Methods: The transport abilities of griseofulvin (GRI), phenytoin (PHE), indomethacin (IND), and ketoprofen (KET) in saturated water solutions and SNEDDS were investigated using the in vitro Madin-Darby canine kidney cell model. GRI and cinnarizine (CIN) in medium-chain triglycerides (MCT)-SNEDDS and long-chain triglycerides (LCT)-SNEDDS were administered in the in vivo SD rat and in vitro lipolysis models to compare the oral absorption and the distribution behaviors in GIT and build an in vitro-in vivo correlation (IVIVC).Results: In the cell model, the solubility of GRI, PHE, IND, and KET increased 6–8 fold by SNEDDS, but their permeability were only 18%, 4%, 8%, and 33% of those of their saturated water solutions, respectively. However, in vivo absorption of GRI-SNEDDS was twice that of the GRI suspension and those of CIN-SNEDDS were 15–21 fold those of the CIN suspension. In the lipolysis model, the GRI% in aqueous and pellet phases of MCT were similar to that in LCT. In contrast, the CIN% in the aqueous and pellet phases were decreased but that of the lipid phase increased. In addition, an IVIVC was found between the CIN% in the lipid phase and in vivo relative oral bioavailability (Fr).Conclusion: The in vitro cell model was still a suitable tool to study drug properties effects on biofilm transport and SNEDDS absorption mechanisms. The in vitro lipolysis model provided superior oral absorption simulation of SNEDDS and helped to build correlation with in vivo rats. The oral drug absorption was affected by drug and oil properties in SNEDDS.Keywords: SNEDDS, MDCK cell model, in vivo rat model, in vitro lipolysis, in vitro-in vivo correlation
format article
author Ye J
Wu H
Huang C
Lin W
Zhang C
Huang B
Lu B
Xu H
Li X
Long X
author_facet Ye J
Wu H
Huang C
Lin W
Zhang C
Huang B
Lu B
Xu H
Li X
Long X
author_sort Ye J
title Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
title_short Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
title_full Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
title_fullStr Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
title_full_unstemmed Comparisons of in vitro Fick’s first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS
title_sort comparisons of in vitro fick’s first law, lipolysis, and in vivo rat models for oral absorption on bcs ii drugs in snedds
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/4b8f3730ac66483daf87aad5f4fecd51
work_keys_str_mv AT yej comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT wuh comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT huangc comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT linw comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT zhangc comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT huangb comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT lub comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT xuh comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT lix comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
AT longx comparisonsofinvitrofickrsquosfirstlawlipolysisandinvivoratmodelsfororalabsorptiononbcsiidrugsinsnedds
_version_ 1718399811833561088