A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification
Electromyogram (EMG) classification is a key technique in EMG-based control systems. Existing EMG classification methods, which do not consider EMG features that have distribution with skewness and kurtosis, have limitations such as the requirement to tune hyperparameters. In this paper, we propose...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4b9066e93ed74ac1a10ba74c28a8b2ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4b9066e93ed74ac1a10ba74c28a8b2ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4b9066e93ed74ac1a10ba74c28a8b2ee2021-11-24T00:01:45ZA Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification2169-353610.1109/ACCESS.2021.3126348https://doaj.org/article/4b9066e93ed74ac1a10ba74c28a8b2ee2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9606727/https://doaj.org/toc/2169-3536Electromyogram (EMG) classification is a key technique in EMG-based control systems. Existing EMG classification methods, which do not consider EMG features that have distribution with skewness and kurtosis, have limitations such as the requirement to tune hyperparameters. In this paper, we propose a neural network based on the Johnson <inline-formula> <tex-math notation="LaTeX">$S_{\mathrm {U}}$ </tex-math></inline-formula> translation system that is capable of representing distributions with skewness and kurtosis. The Johnson system is a normalizing translation that transforms non-normal distribution data into normal distribution data, thereby enabling the representation of a wide range of distributions. In this study, a discriminative model based on the multivariate Johnson <inline-formula> <tex-math notation="LaTeX">$S_{\mathrm {U}}$ </tex-math></inline-formula> translation system is transformed into a linear combination of coefficients and input vectors using log-linearization; then, it is incorporated into a neural network structure. This allows the calculation of the posterior probability of each class given the input vectors and the determination of model parameters as weight coefficients of the network. The uniqueness of convergence of the network learning is theoretically guaranteed. In the experiments, the suitability of the proposed network for distributions including skewness and kurtosis was evaluated using artificially generated data. Its applicability to real biological data was also evaluated via EMG classification experiments. The results showed that the proposed network achieved high classification performance (e.g., 99.973% accuracy using Khushaba’s dataset) without the need for hyperparameter optimization.Hideaki HayashiTaro ShibanokiToshio TsujiIEEEarticleBiomedical signal processingelectromyographyJohnson distributionneural networkspattern recognitionElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 154304-154317 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biomedical signal processing electromyography Johnson distribution neural networks pattern recognition Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Biomedical signal processing electromyography Johnson distribution neural networks pattern recognition Electrical engineering. Electronics. Nuclear engineering TK1-9971 Hideaki Hayashi Taro Shibanoki Toshio Tsuji A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
description |
Electromyogram (EMG) classification is a key technique in EMG-based control systems. Existing EMG classification methods, which do not consider EMG features that have distribution with skewness and kurtosis, have limitations such as the requirement to tune hyperparameters. In this paper, we propose a neural network based on the Johnson <inline-formula> <tex-math notation="LaTeX">$S_{\mathrm {U}}$ </tex-math></inline-formula> translation system that is capable of representing distributions with skewness and kurtosis. The Johnson system is a normalizing translation that transforms non-normal distribution data into normal distribution data, thereby enabling the representation of a wide range of distributions. In this study, a discriminative model based on the multivariate Johnson <inline-formula> <tex-math notation="LaTeX">$S_{\mathrm {U}}$ </tex-math></inline-formula> translation system is transformed into a linear combination of coefficients and input vectors using log-linearization; then, it is incorporated into a neural network structure. This allows the calculation of the posterior probability of each class given the input vectors and the determination of model parameters as weight coefficients of the network. The uniqueness of convergence of the network learning is theoretically guaranteed. In the experiments, the suitability of the proposed network for distributions including skewness and kurtosis was evaluated using artificially generated data. Its applicability to real biological data was also evaluated via EMG classification experiments. The results showed that the proposed network achieved high classification performance (e.g., 99.973% accuracy using Khushaba’s dataset) without the need for hyperparameter optimization. |
format |
article |
author |
Hideaki Hayashi Taro Shibanoki Toshio Tsuji |
author_facet |
Hideaki Hayashi Taro Shibanoki Toshio Tsuji |
author_sort |
Hideaki Hayashi |
title |
A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
title_short |
A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
title_full |
A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
title_fullStr |
A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
title_full_unstemmed |
A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification |
title_sort |
neural network based on the johnson <italic>s</italic><sub>u</sub> translation system and related application to electromyogram classification |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/4b9066e93ed74ac1a10ba74c28a8b2ee |
work_keys_str_mv |
AT hideakihayashi aneuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification AT taroshibanoki aneuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification AT toshiotsuji aneuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification AT hideakihayashi neuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification AT taroshibanoki neuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification AT toshiotsuji neuralnetworkbasedonthejohnsonitalicsitalicsubusubtranslationsystemandrelatedapplicationtoelectromyogramclassification |
_version_ |
1718416090790363136 |