A Neural Network Based on the Johnson <italic>S</italic><sub>U</sub> Translation System and Related Application to Electromyogram Classification
Electromyogram (EMG) classification is a key technique in EMG-based control systems. Existing EMG classification methods, which do not consider EMG features that have distribution with skewness and kurtosis, have limitations such as the requirement to tune hyperparameters. In this paper, we propose...
Enregistré dans:
Auteurs principaux: | Hideaki Hayashi, Taro Shibanoki, Toshio Tsuji |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4b9066e93ed74ac1a10ba74c28a8b2ee |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SUPERVISED PATTERN RECOGNITION TECHNIQUES FOR CLASSIFICATION OF EUCALYPTUS SPECIES FROM LEAVES NIR SPECTRA
par: CASTILLO,ROSARIO, et autres
Publié: (2008) -
Hepatectomía derecha extendida por colangiocarcinoma intrahepático en un paciente con síndrome de Dubin-Johnson
par: GAMBOA C,CRISTIAN, et autres
Publié: (2009) -
FEM simulation for orthogonal cutting of Titanium-alloy considering ductile fracture to Johnson-Cook model
par: Makoto NIKAWA, et autres
Publié: (2016) -
On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations
par: Florin F. Nichita
Publié: (2021) -
sEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and Posture Groups
par: Jongman Kim, et autres
Publié: (2021)