Few-shot pulse wave contour classification based on multi-scale feature extraction
Abstract The annotation procedure of pulse wave contour (PWC) is expensive and time-consuming, thereby hindering the formation of large-scale datasets to match the requirements of deep learning. To obtain better results under the condition of few-shot PWC, a small-parameter unit structure and a mult...
Guardado en:
Autores principales: | Peng Lu, Chao Liu, Xiaobo Mao, Yvping Zhao, Hanzhang Wang, Hongpo Zhang, Lili Guo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4b96fd66e9174b629d7633e646bf4da8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient few-shot machine learning for classification of EBSD patterns
por: Kevin Kaufmann, et al.
Publicado: (2021) -
Few-Shot Charge Prediction with Data Augmentation and Feature Augmentation
por: Peipeng Wang, et al.
Publicado: (2021) -
Effect of Probabilistic Similarity Measure on Metric-Based Few-Shot Classification
por: Youngjae Lee, et al.
Publicado: (2021) -
Few-shot cotton leaf spots disease classification based on metric learning
por: Xihuizi Liang
Publicado: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
por: Pei Zhang, et al.
Publicado: (2021)