Machine learning workflow to enhance predictions of Adverse Drug Reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases
Abstract Adverse drug reactions (ADRs) pose critical public health issues, affecting over 6% of hospitalized patients. While knowledge of potential drug-drug interactions (DDI) is necessary to prevent ADR, the rapid pace of drug discovery makes it challenging to maintain a strong insight into DDIs....
Guardado en:
Autores principales: | Kalpana Raja, Matthew Patrick, James T. Elder, Lam C. Tsoi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ba7224201d24ca9b7d08693a91a8245 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dermoscopic Aspects of Cutaneous Adverse Drug Reactions
por: Gabriela Rossi, et al.
Publicado: (2021) -
Severe cutaneous adverse reactions to drugs: a case series study
por: Clarisse F. CASTRO, et al.
Publicado: (2020) -
Adverse drug reactions
por: AA Moghadam Nia
Publicado: (1999) -
Identification of drug-specific public TCR driving severe cutaneous adverse reactions
por: Ren-You Pan, et al.
Publicado: (2019) -
Adverse Drug Reaction Monitoring of Anticancer Drugs in Hematology Department
por: Ghazal Roohi, et al.
Publicado: (2021)