Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
Abstract In Coronavirus disease 2019 (COVID-19), early identification of patients with a high risk of mortality can significantly improve triage, bed allocation, timely management, and possibly, outcome. The study objective is to develop and validate individualized mortality risk scores based on the...
Enregistré dans:
Auteurs principaux: | Sujoy Kar, Rajesh Chawla, Sai Praveen Haranath, Suresh Ramasubban, Nagarajan Ramakrishnan, Raju Vaishya, Anupam Sibal, Sangita Reddy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/4bb232ea10b045828e4c97aab2c2c3d3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Consultant input in acute medical admissions and patient outcomes in hospitals in England: a multivariate analysis.
par: Derek Bell, et autres
Publié: (2013) -
Trends in severity of illness on ICU admission and mortality among the elderly.
par: Lior Fuchs, et autres
Publié: (2014) -
Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach
par: Patricia C. Liaw, PhD, et autres
Publié: (2019) -
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
par: Sonu Subudhi, et autres
Publié: (2021) -
Factors associated with admission to the intensive care unit and mortality in patients with COVID-19, Colombia.
par: Jorge Enrique Machado-Alba, et autres
Publié: (2021)