Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search
Abstract Does multisensory distractor-target context learning enhance visual search over and above unisensory learning? To address this, we had participants perform a visual search task under both uni- and multisensory conditions. Search arrays consisted of one Gabor target that differed from three...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bb5e9f8834c4b8fa04fd4602b3a5b7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4bb5e9f8834c4b8fa04fd4602b3a5b7e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4bb5e9f8834c4b8fa04fd4602b3a5b7e2021-12-02T14:41:52ZMultisensory visuo-tactile context learning enhances the guidance of unisensory visual search10.1038/s41598-021-88946-62045-2322https://doaj.org/article/4bb5e9f8834c4b8fa04fd4602b3a5b7e2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88946-6https://doaj.org/toc/2045-2322Abstract Does multisensory distractor-target context learning enhance visual search over and above unisensory learning? To address this, we had participants perform a visual search task under both uni- and multisensory conditions. Search arrays consisted of one Gabor target that differed from three homogeneous distractors in orientation; participants had to discriminate the target’s orientation. In the multisensory session, additional tactile (vibration-pattern) stimulation was delivered to two fingers of each hand, with the odd-one-out tactile target and the distractors co-located with the corresponding visual items in half the trials; the other half presented the visual array only. In both sessions, the visual target was embedded within identical (repeated) spatial arrangements of distractors in half of the trials. The results revealed faster response times to targets in repeated versus non-repeated arrays, evidencing ‘contextual cueing’. This effect was enhanced in the multisensory session—importantly, even when the visual arrays presented without concurrent tactile stimulation. Drift–diffusion modeling confirmed that contextual cueing increased the rate at which task-relevant information was accumulated, as well as decreasing the amount of evidence required for a response decision. Importantly, multisensory learning selectively enhanced the evidence-accumulation rate, expediting target detection even when the context memories were triggered by visual stimuli alone.Siyi ChenZhuanghua ShiHermann J. MüllerThomas GeyerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Siyi Chen Zhuanghua Shi Hermann J. Müller Thomas Geyer Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
description |
Abstract Does multisensory distractor-target context learning enhance visual search over and above unisensory learning? To address this, we had participants perform a visual search task under both uni- and multisensory conditions. Search arrays consisted of one Gabor target that differed from three homogeneous distractors in orientation; participants had to discriminate the target’s orientation. In the multisensory session, additional tactile (vibration-pattern) stimulation was delivered to two fingers of each hand, with the odd-one-out tactile target and the distractors co-located with the corresponding visual items in half the trials; the other half presented the visual array only. In both sessions, the visual target was embedded within identical (repeated) spatial arrangements of distractors in half of the trials. The results revealed faster response times to targets in repeated versus non-repeated arrays, evidencing ‘contextual cueing’. This effect was enhanced in the multisensory session—importantly, even when the visual arrays presented without concurrent tactile stimulation. Drift–diffusion modeling confirmed that contextual cueing increased the rate at which task-relevant information was accumulated, as well as decreasing the amount of evidence required for a response decision. Importantly, multisensory learning selectively enhanced the evidence-accumulation rate, expediting target detection even when the context memories were triggered by visual stimuli alone. |
format |
article |
author |
Siyi Chen Zhuanghua Shi Hermann J. Müller Thomas Geyer |
author_facet |
Siyi Chen Zhuanghua Shi Hermann J. Müller Thomas Geyer |
author_sort |
Siyi Chen |
title |
Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
title_short |
Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
title_full |
Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
title_fullStr |
Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
title_full_unstemmed |
Multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
title_sort |
multisensory visuo-tactile context learning enhances the guidance of unisensory visual search |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4bb5e9f8834c4b8fa04fd4602b3a5b7e |
work_keys_str_mv |
AT siyichen multisensoryvisuotactilecontextlearningenhancestheguidanceofunisensoryvisualsearch AT zhuanghuashi multisensoryvisuotactilecontextlearningenhancestheguidanceofunisensoryvisualsearch AT hermannjmuller multisensoryvisuotactilecontextlearningenhancestheguidanceofunisensoryvisualsearch AT thomasgeyer multisensoryvisuotactilecontextlearningenhancestheguidanceofunisensoryvisualsearch |
_version_ |
1718389868724224000 |