Spiking neurons from tunable Gaussian heterojunction transistors

Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.

Guardado en:
Detalles Bibliográficos
Autores principales: Megan E. Beck, Ahish Shylendra, Vinod K. Sangwan, Silu Guo, William A. Gaviria Rojas, Hocheon Yoo, Hadallia Bergeron, Katherine Su, Amit R. Trivedi, Mark C. Hersam
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/4bbd6d5c2b1f4d8f83394ac1c32b1319
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4bbd6d5c2b1f4d8f83394ac1c32b1319
record_format dspace
spelling oai:doaj.org-article:4bbd6d5c2b1f4d8f83394ac1c32b13192021-12-02T16:49:45ZSpiking neurons from tunable Gaussian heterojunction transistors10.1038/s41467-020-15378-72041-1723https://doaj.org/article/4bbd6d5c2b1f4d8f83394ac1c32b13192020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15378-7https://doaj.org/toc/2041-1723Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.Megan E. BeckAhish ShylendraVinod K. SangwanSilu GuoWilliam A. Gaviria RojasHocheon YooHadallia BergeronKatherine SuAmit R. TrivediMark C. HersamNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
Spiking neurons from tunable Gaussian heterojunction transistors
description Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.
format article
author Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
author_facet Megan E. Beck
Ahish Shylendra
Vinod K. Sangwan
Silu Guo
William A. Gaviria Rojas
Hocheon Yoo
Hadallia Bergeron
Katherine Su
Amit R. Trivedi
Mark C. Hersam
author_sort Megan E. Beck
title Spiking neurons from tunable Gaussian heterojunction transistors
title_short Spiking neurons from tunable Gaussian heterojunction transistors
title_full Spiking neurons from tunable Gaussian heterojunction transistors
title_fullStr Spiking neurons from tunable Gaussian heterojunction transistors
title_full_unstemmed Spiking neurons from tunable Gaussian heterojunction transistors
title_sort spiking neurons from tunable gaussian heterojunction transistors
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/4bbd6d5c2b1f4d8f83394ac1c32b1319
work_keys_str_mv AT meganebeck spikingneuronsfromtunablegaussianheterojunctiontransistors
AT ahishshylendra spikingneuronsfromtunablegaussianheterojunctiontransistors
AT vinodksangwan spikingneuronsfromtunablegaussianheterojunctiontransistors
AT siluguo spikingneuronsfromtunablegaussianheterojunctiontransistors
AT williamagaviriarojas spikingneuronsfromtunablegaussianheterojunctiontransistors
AT hocheonyoo spikingneuronsfromtunablegaussianheterojunctiontransistors
AT hadalliabergeron spikingneuronsfromtunablegaussianheterojunctiontransistors
AT katherinesu spikingneuronsfromtunablegaussianheterojunctiontransistors
AT amitrtrivedi spikingneuronsfromtunablegaussianheterojunctiontransistors
AT markchersam spikingneuronsfromtunablegaussianheterojunctiontransistors
_version_ 1718383212837732352