Spiking neurons from tunable Gaussian heterojunction transistors
Designing high performance, scalable, and energy efficient spiking neural networks remains a challenge. Here, the authors utilize mixed-dimensional dual-gated Gaussian heterojunction transistors from single-walled carbon nanotubes and monolayer MoS2 to realize simplified spiking neuron circuits.
Guardado en:
Autores principales: | Megan E. Beck, Ahish Shylendra, Vinod K. Sangwan, Silu Guo, William A. Gaviria Rojas, Hocheon Yoo, Hadallia Bergeron, Katherine Su, Amit R. Trivedi, Mark C. Hersam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bbd6d5c2b1f4d8f83394ac1c32b1319 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tunable rectification in a molecular heterojunction with two-dimensional semiconductors
por: Jaeho Shin, et al.
Publicado: (2020) -
Author Correction: Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor
por: Mingzhi Dai, et al.
Publicado: (2021) -
Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor
por: Jangyup Son, et al.
Publicado: (2016) -
Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors
por: Hocheon Yoo, et al.
Publicado: (2017) -
Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
por: Mostafa Rahimi Azghadi, et al.
Publicado: (2014)