Neural network aided approximation and parameter inference of non-Markovian models of gene expression

Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.

Guardado en:
Detalles Bibliográficos
Autores principales: Qingchao Jiang, Xiaoming Fu, Shifu Yan, Runlai Li, Wenli Du, Zhixing Cao, Feng Qian, Ramon Grima
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4bc73034fff748fc9da54f683d9b7be8
record_format dspace
spelling oai:doaj.org-article:4bc73034fff748fc9da54f683d9b7be82021-12-02T16:58:08ZNeural network aided approximation and parameter inference of non-Markovian models of gene expression10.1038/s41467-021-22919-12041-1723https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be82021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22919-1https://doaj.org/toc/2041-1723Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.Qingchao JiangXiaoming FuShifu YanRunlai LiWenli DuZhixing CaoFeng QianRamon GrimaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Qingchao Jiang
Xiaoming Fu
Shifu Yan
Runlai Li
Wenli Du
Zhixing Cao
Feng Qian
Ramon Grima
Neural network aided approximation and parameter inference of non-Markovian models of gene expression
description Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.
format article
author Qingchao Jiang
Xiaoming Fu
Shifu Yan
Runlai Li
Wenli Du
Zhixing Cao
Feng Qian
Ramon Grima
author_facet Qingchao Jiang
Xiaoming Fu
Shifu Yan
Runlai Li
Wenli Du
Zhixing Cao
Feng Qian
Ramon Grima
author_sort Qingchao Jiang
title Neural network aided approximation and parameter inference of non-Markovian models of gene expression
title_short Neural network aided approximation and parameter inference of non-Markovian models of gene expression
title_full Neural network aided approximation and parameter inference of non-Markovian models of gene expression
title_fullStr Neural network aided approximation and parameter inference of non-Markovian models of gene expression
title_full_unstemmed Neural network aided approximation and parameter inference of non-Markovian models of gene expression
title_sort neural network aided approximation and parameter inference of non-markovian models of gene expression
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be8
work_keys_str_mv AT qingchaojiang neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT xiaomingfu neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT shifuyan neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT runlaili neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT wenlidu neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT zhixingcao neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT fengqian neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
AT ramongrima neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression
_version_ 1718382383421456384