Neural network aided approximation and parameter inference of non-Markovian models of gene expression
Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4bc73034fff748fc9da54f683d9b7be8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4bc73034fff748fc9da54f683d9b7be82021-12-02T16:58:08ZNeural network aided approximation and parameter inference of non-Markovian models of gene expression10.1038/s41467-021-22919-12041-1723https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be82021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22919-1https://doaj.org/toc/2041-1723Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.Qingchao JiangXiaoming FuShifu YanRunlai LiWenli DuZhixing CaoFeng QianRamon GrimaNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Qingchao Jiang Xiaoming Fu Shifu Yan Runlai Li Wenli Du Zhixing Cao Feng Qian Ramon Grima Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
description |
Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control. |
format |
article |
author |
Qingchao Jiang Xiaoming Fu Shifu Yan Runlai Li Wenli Du Zhixing Cao Feng Qian Ramon Grima |
author_facet |
Qingchao Jiang Xiaoming Fu Shifu Yan Runlai Li Wenli Du Zhixing Cao Feng Qian Ramon Grima |
author_sort |
Qingchao Jiang |
title |
Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
title_short |
Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
title_full |
Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
title_fullStr |
Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
title_full_unstemmed |
Neural network aided approximation and parameter inference of non-Markovian models of gene expression |
title_sort |
neural network aided approximation and parameter inference of non-markovian models of gene expression |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be8 |
work_keys_str_mv |
AT qingchaojiang neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT xiaomingfu neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT shifuyan neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT runlaili neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT wenlidu neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT zhixingcao neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT fengqian neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression AT ramongrima neuralnetworkaidedapproximationandparameterinferenceofnonmarkovianmodelsofgeneexpression |
_version_ |
1718382383421456384 |