Neural network aided approximation and parameter inference of non-Markovian models of gene expression
Cells are complex systems that make decisions biologists struggle to understand. Here, the authors use neural networks to approximate the solution of mathematical models that capture the history and randomness of biochemical processes in order to understand the principles of transcription control.
Guardado en:
Autores principales: | Qingchao Jiang, Xiaoming Fu, Shifu Yan, Runlai Li, Wenli Du, Zhixing Cao, Feng Qian, Ramon Grima |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bc73034fff748fc9da54f683d9b7be8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Markovianization with approximate unitary designs
por: Pedro Figueroa–Romero, et al.
Publicado: (2021) -
Linear mapping approximation of gene regulatory networks with stochastic dynamics
por: Zhixing Cao, et al.
Publicado: (2018) -
Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks
por: Mi Feng, et al.
Publicado: (2019) -
Publisher Correction: Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks
por: Mi Feng, et al.
Publicado: (2019) -
Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir
por: Dong Wang, et al.
Publicado: (2017)