Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity
Abstract We analyze multistability in a star-type network of phase oscillators with coupling weights governed by phase-difference-dependent plasticity. It is shown that a network with N leaves can evolve into $$2^N$$ 2 N various asymptotic states, characterized by different values of the coupling st...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bc9515fdf454cf8b90e49aea55d6483 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We analyze multistability in a star-type network of phase oscillators with coupling weights governed by phase-difference-dependent plasticity. It is shown that a network with N leaves can evolve into $$2^N$$ 2 N various asymptotic states, characterized by different values of the coupling strength between the hub and the leaves. Starting from the simple case of two coupled oscillators, we develop an analytical approach based on two small parameters $$\varepsilon$$ ε and $$\mu$$ μ , where $$\varepsilon$$ ε is the ratio of the time scales of the phase variables and synaptic weights, and $$\mu$$ μ defines the sharpness of the plasticity boundary function. The limit $$\mu \rightarrow 0$$ μ → 0 corresponds to a hard boundary. The analytical results obtained on the model of two oscillators are generalized for multi-leaf star networks. Multistability with $$2^N$$ 2 N various asymptotic states is numerically demonstrated for one-, two-, three- and nine-leaf star-type networks. |
---|