Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity
Abstract We analyze multistability in a star-type network of phase oscillators with coupling weights governed by phase-difference-dependent plasticity. It is shown that a network with N leaves can evolve into $$2^N$$ 2 N various asymptotic states, characterized by different values of the coupling st...
Guardado en:
Autores principales: | Irmantas Ratas, Kestutis Pyragas, Peter A. Tass |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4bc9515fdf454cf8b90e49aea55d6483 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Publisher Correction: Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity
por: Irmantas Ratas, et al.
Publicado: (2021) -
Minimal fatal shocks in multistable complex networks
por: Lukas Halekotte, et al.
Publicado: (2020) -
Pupillometry in auditory multistability.
por: Jan Grenzebach, et al.
Publicado: (2021) -
Emulating the local Kuramoto model with an injection-locked photonic crystal laser array
por: Naotomo Takemura, et al.
Publicado: (2021) -
Six types of multistability in a neuronal model based on slow calcium current.
por: Tatiana Malashchenko, et al.
Publicado: (2011)